Penambahan Compatibilizer pada Polymer Blend dari Limbah Masker Sekali Pakai dan Polypropylene Daur Ulang terhadap Sifat Mekanik Material
DOI:
https://doi.org/10.23887/jstundiksha.v13i3.84945Keywords:
Limbah Masker, Polymer Blend, Compatibilizer, Sifat Mekanik, Daur UlangAbstract
Pandemi COVID-19 meningkatkan limbah masker sekali pakai secara signifikan, menghasilkan mikroplastik yang sulit terurai dan berbahaya bagi lingkungan. Masalah ini mendorong penelitian untuk mengembangkan solusi berbasis daur ulang menggunakan polymer blend dengan penambahan compatibilizer untuk meningkatkan sifat mekanis. Penelitian ini bertujuan menganalisis efek compatibilizer Maleic Anhydride Grafted Polypropylene (MAPP) pada polymer blend berbahan polypropylene limbah masker sekali pakai. Penelitian ini merupakan eksperimen dengan desain kuantitatif. Subjek penelitian terdiri dari spesimen polymer blend dengan variasi komposisi limbah masker (70-100%), polypropylene daur ulang (30%), dan compatibilizer MAPP (0-3%). Sebanyak 5 spesimen diuji untuk masing-masing variasi menggunakan standar ASTM D638 untuk uji tarik dan ASTM D256 untuk uji impak. Data dikumpulkan melalui pengujian mekanik dan dianalisis menggunakan statistik deskriptif dan inferensial. Hasil penelitian menunjukkan bahwa penambahan compatibilizer meningkatkan sifat tarik dan impak polymer blend secara signifikan dibandingkan dengan campuran tanpa compatibilizer. Simpulan penelitian ini menunjukkan bahwa polymer blend berbasis limbah masker dengan compatibilizer MAPP dapat menjadi alternatif material ramah lingkungan dengan sifat mekanik yang lebih baik, berpotensi sebagai produk hijau bernilai komersial. Implikasinya, metode ini mendukung pengelolaan limbah plastik berkelanjutan dan ekonomi sirkular.
References
Alghamdi, M. N. (2022). Thermoplastic composite system using polymer blend and fillers. Journal of King Saud University - Engineering Sciences, 34(5), 361–365. https://doi.org/10.1016/j.jksues.2020.12.009.
Ali, M., Opulencia, M. J. C., Chandra, T., Chandra, S., Muda, I., Dias, R., Chetthamrongchai, P., & Jalil, A. T. (2022). An Environmentally Friendly Solution for Waste Facial Masks Recycled in Construction Materials. Sustainability (Switzerland), 14(14). https://doi.org/10.3390/su14148739.
Badri, M. G., Darsin, M., & Dwilaksana, D. (2014). Sifat Mekanik Dan Cacat Penyusutan (Shrinkage) Akibat Variasi Komposisi Campuran Daur Ulang Polyethylene Pada Injection Moulding. ROTOR, 7(4).
Battegazzore, D., Cravero, F., & Frache, A. (2020). Is it possible to mechanical recycle the materials of the disposable filtering masks? Polymers, 12(11), 1–18. https://doi.org/10.3390/polym12112726.
Bertin, S., & Robin, J.-J. (2002). Study and characterization of virgin and recycled PE/PP blends. European Polymer Journal 38, 38, 2255–2264. https://doi.org/10.1016/S0014-3057(02)00111-8.
Chen, R. S., Ahmad, S., Gan, S., Salleh, M. N., Ab Ghani, M. H., & Tarawneh, M. A. (2016). Effect of polymer blend matrix compatibility and fibre reinforcement content on thermal stability and flammability of ecocomposites made from waste materials. Thermochimica Acta, 640, 52–61. https://doi.org/10.1016/j.tca.2016.08.005.
Cui, J., Qi, M., Zhang, Z., Gao, S., Xu, N., Wang, X., Li, N., & Chen, G. (2023). Disposal and resource utilization of waste masks: a review. Environmental Science and Pollution Research, 0123456789. https://doi.org/10.1007/s11356-023-25353-6.
Dikobe, D. G., & Luyt, A. S. (2017). Thermal and mechanical properties of PP/HDPE/wood powder and MAPP/HDPE/wood powder polymer blend composites. Thermochimica Acta, 654(4), 40–50. https://doi.org/10.1016/j.tca.2017.05.002.
Graziano, A., Jaffer, S., & Sain, M. (2019). Review on modification strategies of polyethylene/polypropylene immiscible thermoplastic polymer blends for enhancing their mechanical behavior. In Journal of Elastomers and Plastics (Vol. 51, Issue 4). https://doi.org/10.1177/0095244318783806.
Hiscott, J., Alexandridi, M., Muscolini, M., Tassone, E., Palermo, E., Soultsioti, M., & Zevini, A. (2020). The global impact of the coronavirus pandemic. Cytokine and Growth Factor Reviews, 53(5), 1–9. https://doi.org/10.1016/j.cytogfr.2020.05.010.
Idrees, M., Akbar, A., Mohamed, A. M., Fathi, D., & Saeed, F. (2022). Recycling of Waste Facial Masks as a Construction Material, a Step towards Sustainability. Materials, 15(5), 1–13. https://doi.org/10.3390/ma15051810.
Irez, A. B., Okan, C., Kaya, R., & Cebe, E. (2022). Development of recycled disposable mask based polypropylene matrix composites: Microwave self-healing via graphene nanoplatelets. Sustainable Materials and Technologies, 31(12), e00389. https://doi.org/10.1016/j.susmat.2022.e00389.
Jiang, W. R., Bao, R. Y., Yang, W., Liu, Z. Y., Xie, B. H., & Yang, M. B. (2014). Morphology, interfacial and mechanical properties of polylactide/poly(ethylene terephthalate glycol) blends compatibilized by polylactide-g-maleic anhydride. Materials and Design, 59, 524–531. https://doi.org/10.1016/j.matdes.2014.03.016.
Juang, P. S. C., & Tsai, P. (2020). N95 Respirator Cleaning and Reuse Methods Proposed by the Inventor of the N95 Mask Material. Journal of Emergency Medicine, 58(5), 817–820. https://doi.org/10.1016/j.jemermed.2020.04.036.
Kholil, A., Syaefuddin, E. A., Supardi, F., & Wulandari, D. A. (2022). The Effect of Layer Thickness on Impact Strength Characteristics of ABS and PLA Materials. In Journal of Physics: Conference Series (Vol. 2377, pp. 0–6). https://doi.org/10.1088/1742-6596/2377/1/012001.
Kristiawan, R. B., Rusdyanto, B., Imaduddin, F., & Ariawan, D. (2022). Glass powder additive on recycled polypropylene filaments: A sustainable material in 3d printing. Polymers, 14(1). https://doi.org/10.3390/polym14010005.
La Mantia, F. P., Morreale, M., Botta, L., Mistretta, M. C., Ceraulo, M., & Scaffaro, R. (2017). Degradation of polymer blends: A brief review. Polymer Degradation and Stability, 145, 79–92. https://doi.org/10.1016/j.polymdegradstab.2017.07.011.
Lin, J. H., Pan, Y. J., Liu, C. F., Huang, C. L., Hsieh, C. T., Chen, C. K., Lin, Z. I., & Lou, C. W. (2015). Preparation and compatibility evaluation of polypropylene/high density polyethylene polyblends. Materials, 8(12), 8850–8859. https://doi.org/10.3390/ma8125496.
Liu, Z., Wang, J., Yang, X., Huang, Q., Zhu, K., Sun, Y., Van Hulle, S., & Jia, H. (2022). Generation of environmental persistent free radicals (EPFRs) enhances ecotoxicological effects of the disposable face mask waste with the COVID-19 pandemic. Environmental Pollution, 301(2), 119019. https://doi.org/10.1016/j.envpol.2022.119019.
Ma, H., Guna, V., Raju, T., Murthy, A. N., & Reddy, N. (2023). Converting flax processing waste into value added biocomposites. Industrial Crops and Products, 195(2), 116434. https://doi.org/10.1016/j.indcrop.2023.116434.
Orjuela, D., Munar, D. A., Solano, J. K., & Becerra, A. P. (2021). Assessment of the thermal properties of a rice husk mixture with recovered polypropylene and high density polyethylene, using sulfur-silane as a coupling agent. Chemical Engineering Transactions, 87(4), 565–570. https://doi.org/10.3303/CET2187095.
Roslan, N., Rahim, S. Z. A., Abdellah, A. E. H., Abdullah, M. M. A. B., Błoch, K., Pietrusiewicz, P., Nabiałek, M., Szmidla, J., Kwiatkowski, D., Vasco, J. O. C., Saad, M. N. M., & Ghazali, M. F. (2021). Optimisation of shrinkage and strength on thick plate part using recycled ldpe materials. Materials, 14(7). https://doi.org/10.3390/ma14071795.
Sabri, I. N., Bakar, M. B. A., Mohd, S. H., Rosdi, N. A. H. N., Mohamed, M., Sulaiman, M. A., Masri, M. N., & Chuangchote, S. (2020). Effects on MAPP Compatibilizer on Mechanical Properties of Kenaf Core Fibre/Graphene Nanoplatelets reinforced Polypropylene Hybrid Composites. IOP Conference Series: Earth and Environmental Science, 596(1). https://doi.org/10.1088/1755-1315/596/1/012023.
Sakinah, A., Abidin, Z., Liyana Binti Dolmat, N., Binti, N. A., & Sabri, M. (2022). Green Recycling Approach To Produce Heavy Duty Kids Chair From Face Mask Waste. International Journal of Technical Vocational and Engineering Technology, 3(1), 2022. https://journal.pktm.com.my/index.php/ijtvet/article/view/79.
Sanadi, A. R., Guna, V., Hoysal, R. V., Krishna, A., Deepika, S., Mohan, C. B., & Reddy, N. (2023). MAPP Compatibilized Recycled Woodchips Reinforced Polypropylene Composites with Exceptionally High Strength and Stability. Waste and Biomass Valorization, 0123456789. https://doi.org/10.1007/s12649-023-02150-3.
Seyni, F. I., & Grady, B. P. (2021). Janus particles as immiscible polymer blend compatibilizers: a review. Colloid and Polymer Science, 299(4), 585–593. https://doi.org/10.1007/s00396-021-04820-x.
Shah, A. U. M., Sultan, M. T. H., Jawaid, M., Cardona, F., & Talib, A. R. A. (2016). A Review on the Tensile Properties of Bamboo Fiber Reinforced Polymer Composites. BioResources, 11(4), 10654–10676. https://doi.org/10.15376/BIORES.11.4.10654-10676.
Techawinyutham, L., Tengsuthiwat, J., Srisuk, R., Techawinyutham, W., Mavinkere Rangappa, S., & Siengchin, S. (2021). Recycled LDPE/PETG blends and HDPE/PETG blends: mechanical, thermal, and rheological properties. Journal of Materials Research and Technology, 15, 2445–2458. https://doi.org/10.1016/j.jmrt.2021.09.052.
Toh, H. W., Toong, D. W. Y., Ng, J. C. K., Ow, V., Lu, S., Tan, L. P., Wong, P. E. H., Venkatraman, S., Huang, Y., & Ang, H. Y. (2021). Polymer blends and polymer composites for cardiovascular implants. European Polymer Journal, 146(December 2020). https://doi.org/10.1016/j.eurpolymj.2020.110249.
Vallejos, E., Vilaseca, F., M, A., Espinach, F. X., Aguado, R. J., Delgado-aguilar, M., & Mutj, P. (2023). Response of Polypropylene Composites Reinforced with Natural Fibers : Impact Strength and Water-Uptake Behaviors. https://doi.org/10.3390/polym15040900.
Varghese P. J, G., David, D. A., Karuth, A., Manamkeri Jafferali, J. F., Sabura, S. B., George, J. J., Rasulev, B., & Raghavan, P. (2022). Experimental and Simulation Studies on Nonwoven Polypropylene-Nitrile Rubber Blend: Recycling of Medical Face Masks to an Engineering Product. ACS Omega, 7(6), 4791–4803. https://doi.org/10.1021/acsomega.1c04913.
Xiang, M., Yang, Z., Yang, J., Lu, T., Wu, D., Liu, Z., Xue, R., & Dong, S. (2022). Conductive polymer composites fabricated by disposable face masks and multi-walled carbon nanotubes: Crystalline structure and enhancement effect. Journal of Renewable Materials, 10(3), 821–831. https://doi.org/10.32604/jrm.2022.017347.
Zhou, Y., Wang, J., Zou, M., Jia, Z., Zhou, S., & Li, Y. (2020). Microplastics in soils: A review of methods, occurrence, fate, transport, ecological and environmental risks. Science of the Total Environment, 748, 141368. https://doi.org/10.1016/j.scitotenv.2020.141368.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Indah Widiastuti, Anwar Ibrahim, Yuyun Estriyanto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)