ANALISIS IN SILICO PROTEIN CLOCK (CIRCADIAN LOCOMOTOR OUTPUT CYCLES KAPUT) PADA Patagioenas fasciata monilis

Penulis

  • Suprianto Suprianto Program Studi Pendidikan Biologi, Universitas Tadulako, Palu, Indonesia
  • I Made Budiarsa Program Studi Pendidikan Biologi, Universitas Tadulako, Palu, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v10i1.24888

Kata Kunci:

protein CLOCK, sikardian clock, in silico, metode homologi

Abstrak

CLOCK merupakan protein penting yang  berperan dalam adaptasi ekologi dan fisiologi organisme. Studi sebelumnya menjelaskan bahwa CLOCK memiliki pengaruh terhadap perubahan perilaku hewan. Penelitian ini bertujuan untuk menganalisis protein CLOCK pada burung Patagioenas fasciata monilis. Metode yang digunakan pada penelitian ini adalah metode homologi. Hasil struktur model berdasarkan assessment menunjukkan akurasi model yang mendekati struktur sebenarnya. Struktur model yang diperoleh memiliki berat 96200,04 Daltons, tiga daerah struktur beta-sheet, lima daerah struktur alpha-helix, 1,47 % daerah outliers,  dua residu C-Beta Deviations, nilai identity 94,43 %, 34 sudut buruk, nilai QMEAN  -1,69 dan nilai GMQE 0,31.

 

Kata Kunci : CLOCK, Patagioenas fasciata monilis, in silico, homologi

Referensi

Amelia. (2010). Penapisan In Silico beberapa Senyawa Bahan Alam Terhadap Aktivitas Protease HIV-1. Skripsi Sarjana Farmasi. Universitas Indonesia: Depok.

Arifin, A. (2009). Glutamine. Majalah Kedokteran Nusantara. 42(1).

Arnold, K., Bordoli, L., Kopp, J., & Schwede T., (2006). The SWISS-MODEL Workspace: A Web-Based Environment For Protein Structure Homology Modeling. Bioinformatics. 22(2): 195-201.

Beale, A.D., Whitmore, D. & Moran, D. (2016). Life in A Dark Biosphere: A Review of Circadian Physiology in Arrythmic Enviroments. J Comp Physiol B. 186(8).

Benkert, P., Biasini, M., & Schwede, T. (2011). Toward The Estimation of The Absolute Quality of Individual Protein Structure Models. Bioinformatics. 27: 343-350.

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K.., Studer G., Schmidt, T., Kiefer, F.,, Cassarino, T.G., Bertoni, M., Bordoli, L., and Schwede, T. (2014). SWISS-MODEL: Modelling Protein Tertiary and Quaternary Structure Msing Evolutionary Information. Nucleic Acids Research. 1-7.

Cassone, V.M. & Westneat, D.F. (2012). The bird of time: cognition and the avian biological clock. Front Mol Neurosci. 5: 32.

Dor, R., Cooper, C.B., Lovette, I.J., Massoni, V., Bulit F., Liljesthrom M., Liljesthrom, D.W., (2011). Clock gene variation in Tachycineta swallows. Ecology and Evolution. 10(5) : 110-120.

Gekakis, N., David, S., Hubert, B.N., Fred, C.D., Lisa, D.W., Wilsbacer, D.P.K., Joseph, S.T., & Charles, J.W. (1998). Role of The CLOCK Protein in The Mammalian Cicardian Mechanism. Research Articles. 280(5369): 9-1564.

Hafizh, A. (2016). Visualisasi Struktur Tersier Protein Berbasis Web Menggunakan Ribbon Drawing. Skripsi Sarjana Komputer. Institut Pertanian Bogor. Bogor.

Hardin, P.E. (2000). From Bilogical Clock to Biological Rhythms. Genome Biology. 1(4): 1023.1–1023.5.

Harti, A.S. & Soebiyanto. (2017). Biokimia Kesehatan. Jakarta: Trans Info Media.

Hogan, C.M. (2008). Toyon (Heteromeles arbutifolia). Global Twitcher, ed. N. Stromberg: German.

Iriyanto, K. (2017). Biologi Molekuler. Edisi 1. Bandung: Alfabeta.

Johnsen, A., Fidler, A.E., Kuhn, S., Carter, K.L., Hoffman, A., Barr, I.R., Biard, C., Charmantier, A., Eens, M., Korsten, P., Siitari, H., Tomiuk, J., & Kempenaers, B. (2007). Avian Clock Gene Polymorphism: Evidence for A Latitudinal Cline in Allele Frequencies. Molecular Ecology. 16: 4867–4880.

Nathaniel Rich (2014).The Mammoth Cometh. New York Times Magazine: USA.

Okamura, H. (2003). Integration of Mammalian cicardian clock signal : from Molecular of Behavior. Journal of Endocrinol. 177: 3-6.

Panda, S., Hogenesch, J.B., & Kay, S.A. (2002). Circadian Rhythms from Flies to Human. Nature. 417: 329-335.

Sunita A. (2001). Prinsip Dasar Ilmu Gizi. Jakarta: Gramedia Pustaka Utama.

Suprianto, Budiarsa, M., & Dhafir, F. (2020). 3D Structure of VP1 Structural Protein on Enterovirus A71 Using Swiss-Model. BIOEDUSCIENCE: Jurnal Pendidikan Biologi Dan Sains, 4(1), 37-47. https://doi.org/10.29405/j.bes/4137-474353

Takashi, J.S. (2017). Transcriptional Architecture of The Mammalian Circadian Clock. Nat Rev Genet. 18(3): 164–179.

Wang, Z., Wu, Y., & Xu, X.D. (2013). Intermolecular Recognition Revealed By The Complex Structure of Human CLOCK-BMAL1 Basic helix-loop-helix Domain with E-Books DNA. Cell Research. 23: 213-224.

Wijaya H. & F. Hasana. (2016). Prediksi struktur tiga dimensi protein allergen pangan dengan metode homologi menggunakan program SWISS MODEL. Biopropal Industri. 7(2): 83-94.

Yeni & Tjahjono, D.H. (2017). Homology Modeling Epitop Isocitrate Dehydrogenase Tipe 1 (R132h) 2 menggunakan Modeller, I-Tasser Dan (Ps) Untuk Vaksin Glioma. Farmasains. 4(1).

Diterbitkan

2021-03-24

Cara Mengutip

Suprianto, S., & Budiarsa, I. M. (2021). ANALISIS IN SILICO PROTEIN CLOCK (CIRCADIAN LOCOMOTOR OUTPUT CYCLES KAPUT) PADA Patagioenas fasciata monilis. JST (Jurnal Sains Dan Teknologi), 10(1), 9–15. https://doi.org/10.23887/jstundiksha.v10i1.24888

Terbitan

Bagian

Articles