Distribusi Mineral dan Cemaran di Perairan Laut Sebagai Pemanfaatan Air Baku Garam Berkualitas

Penulis

  • Ashari Wicaksono Universitas Trunojoyo Madura, Bangkalan, Indonesia
  • Onie Wiwid Jayanthi Universitas Trunojoyo Madura, Bangkalan, Indonesia
  • Makhfud Efendy Universitas Trunojoyo Madura, Bangkalan, Indonesia
  • Nike Ika Nuzula Universitas Trunojoyo Madura, Bangkalan, Indonesia
  • Ary Giri Dwi Kartika Universitas Trunojoyo Madura, Bangkalan, Indonesia
  • Putri Ayu Rahmadani Universitas Trunojoyo Madura, Bangkalan, Indonesia
  • Dwi Syadina Putri Universitas Trunojoyo Madura, Bangkalan, Indonesia
  • Amalia Hariyanti Universitas Trunojoyo Madura, Bangkalan, Indonesia
  • Moch Syaifullah Universitas Trunojoyo Madura, Bangkalan, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v12i3.43780

Kata Kunci:

Mineral dan Cemaran, Garam, Kualitas Perairan

Abstrak

Total produksi Provinsi Jawa Timur mengalami lonjakan signifikan yakni sebesar 782.706,26 ton dan tiga kabupaten di Madura masih menjadi penyumbang terbesar pada tahun 2018. Dalam meningkatkan rendemen produksi garam, perlu dilakukan peningkatan teknologi dan kualitas bahan baku yang digunakan. , sehingga nantinya dapat menghasilkan garam yang mempunyai kualitas yang baik. Penelitian ini bertujuan untuk mengukur kadar mineral dan pencemaran pada air laut sebagai bahan baku utama garam. Metode yang digunakan adalah purposive sampling, dimana penentuan titik pengambilan sampel adalah 500 meter ke arah barat, sedangkan jarak 1000 meter ke arah laut adalah dari titik pengambilan sampel air yang berada di permukaan laut. Hasil analisis di laboratorium menemukan bahwa konsentrasi bahan organik dan pencemaran yang masih ada di sekitar perairan Desa Padelegans berada di atas batas baku mutu air laut nasional baik di sungai maupun di laut. Tingginya konsentrasi didaerah penelitian dapat disebabkan adanya aktivitas masyarakat berupa perikanan dan wisata di sekitar tambak garam. Kesimpulan yang didapat adalah tingginya kadar mineral dan pencemaran di lokasi penelitian akan berdampak pada kualitas garam yang dihasilkan.

Referensi

Al-Mur, B. A. (2020). Assessing nutrient salts and trace metals distributions in the coastal water of Jeddah, Red Sea. Saudi Journal of Biological Sciences, 27(11), 3087–3098. https://doi.org/10.1016/j.sjbs.2020.07.012.

Andersen, J. H., Al-Hamdani, Z., Harvey, E. T., Kallenbach, E., Murray, C., & Stock, A. (2020). Relative impacts of multiple human stressors in estuaries and coastal waters in the North Sea–Baltic Sea transition zone. Science of the Total Environment, 704. https://doi.org/10.1016/j.scitotenv.2019.135316.

Anderson, L. A., & Sarmiento, J. L. (1994). Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem Cycles, 8(1), 65–80. https://doi.org/10.1029/93gb03318.

Apriani, M., Hadi, W., & Masduqi, A. (2018). Physicochemical Properties of Sea Water and Bittern in Indonesia: Quality Improvement and Potential Resources Utilization for Marine Environmental Sustainability. Journal of Ecological Engineering, Vol. 19(nr 3), 1–10. https://doi.org/10.12911/22998993/86150.

Ariyani, A. H. M., Harianto, H., Suharno, S., & Syaukat, Y. (2020). Factors Affecting Technology Adoption of Geoisolator on Solar Saltworks in East Java Province. AGRIEKONOMIKA, 9(1), 28–37. https://doi.org/10.21107/AGRIEKONOMIKA.V9I1.6856.G4633.

Arizuna, M., Suprapto, D., & Muskanonfola, M. R. (2014). Kandungan nitrat dan fosfat dalam air pori sedimen di Sungai dan Muara Sungai Wedung Demak. Management of Aquatic Resources Journal (MAQUARES), 3(1), 7–16. https://doi.org/10.14710/marj.v3i1.4281.

Baird, M. E., Mongin, M., Skerratt, J., Margvelashvili, N., Tickell, S., Steven, A. D. L., Robillot, C., Ellis, R., Waters, D., Kaniewska, P., & Brodie, J. (2021). Impact of catchment-derived nutrients and sediments on marine water quality on the Great Barrier Reef: An application of the eReefs marine modelling system. Marine Pollution Bulletin, 167. https://doi.org/10.1016/j.marpolbul.2021.112297.

Bakir, B., Zisykien, F. A., Umam, B. A., & Munib, A. (2020). Salinity and Sulphate Concentration Mapping and Analysis: Sea Surface at the Madura Island Context. IOP Conference Series: Earth and Environmental Science, 469(1). https://doi.org/10.1088/1755-1315/469/1/012105.

Båmstedt, U. (2019). Comparing static and dynamic incubations in primary production measurements under different euphotic and mixing depths. Hydrobiologia, 827(1), 155–169. https://doi.org/10.1007/S10750-018-3762-1/TABLES/4.

Bews, E., Booher, L., Polizzi, T., Long, C., Kim, J. H., & Edwards, M. S. (2021). Effects of salinity and nutrients on metabolism and growth of Ulva lactuca: Implications for bioremediation of coastal watersheds. Marine Pollution Bulletin, 166. https://doi.org/10.1016/j.marpolbul.2021.112199.

Bi, S., Lai, H., Guo, D., Liu, X., Wang, G., Chen, X., Liu, S., Yi, H., Su, Y., & Li, G. (2022). Spatio-temporal variation of bacterioplankton community structure in the Pearl River: impacts of artificial fishery habitat and physicochemical factors. BMC Ecology and Evolution, 22(1). https://doi.org/10.1186/s12862-022-01965-3.

Brus, D. J., & Knotters, M. (2008). Sampling design for compliance monitoring of surface water quality: A case study in a Polder area. Water Resources Research, 44(11), 11410. https://doi.org/10.1029/2007WR006123.

Davidson, K., Gowen, R. J., Harrison, P. J., Fleming, L. E., Hoagland, P., & Moschonas, G. (2014). Anthropogenic nutrients and harmful algae in coastal waters. Journal of Environmental Management, 146, 206–216. https://doi.org/10.1016/j.jenvman.2014.07.002.

Dehouck, P., Cordeiro, F., Snell, J., & De La Calle, B. (2016). State of the art in the determination of trace elements in seawater: a worldwide proficiency test. Analytical and Bioanalytical Chemistry. https://doi.org/10.1007/s00216-016-9390-6.

Deng, T., Duan, H.-F., & Keramat, A. (2022). Spatiotemporal characterization and forecasting of coastal water quality in the semi-enclosed Tolo Harbour based on machine learning and EKC analysis. Engineering Applications of Computational Fluid Mechanics, 16(1), 694–712. https://doi.org/10.1080/19942060.2022.2035257.

Deng, Y., Mao, C., Lin, Z., Su, W., Cheng, C., Li, Y., Gu, Q., Gao, R., Su, Y., & Feng, J. (2022). Nutrients, temperature, and oxygen mediate microbial antibiotic resistance in sea bass (Lateolabrax maculatus) ponds. Science of The Total Environment, 819, 153120. https://doi.org/10.1016/J.SCITOTENV.2022.153120.

Diamond, J. S., Bernal, S., Boukra, A., Cohen, M. J., Lewis, D., Masson, M., Moatar, F., & Pinay, G. (2021). Stream network variation in dissolved oxygen: Metabolism proxies and biogeochemical controls. Ecological Indicators, 131, 1470–160. https://doi.org/10.1016/J.ECOLIND.2021.108233.

Goto, T., Mori, H., Shiota, S., & Tomonaga, S. (2019). Metabolomics approach reveals the effects of breed and feed on the composition of chicken eggs. Metabolites, 9(10). https://doi.org/10.3390/metabo9100224.

Hassimi, H., Taleb, · A, Bouezmarni, · M, Karzazi, · O, Taleb, · M, Kherbeche, · A, & Debbaut, · V. (2019). The effect of the physicochemical conditions variations on the behavior of heavy metals trapped in polluted fluvial system sediments: the case of Oued Sebou, Morocco. Applied Water Science, 9, 17. https://doi.org/10.1007/s13201-019-0891-2.

Humanes, A., Ricardo, G. F., Willis, B. L., Fabricius, K. E., & Negri, A. P. (2017). Cumulative effects of suspended sediments, organic nutrients and temperature stress on early life history stages of the coral Acropora tenuis. Nature Publishing Group. https://doi.org/10.1038/srep44101.

Karthikeyan, P., Marigoudar, S. R., Mohan, D., Sharma, K. V., & Ramana Murthy, M. V. (2021). Prescribing sea water quality criteria for arsenic, cadmium and lead through species sensitivity distribution. Ecotoxicology and Environmental Safety, 208, 111612. https://doi.org/10.1016/J.ECOENV.2020.111612.

Ke, S., Chen, J., & Zheng, X. (2021). Influence of the subsurface physical barrier on nitrate contamination and seawater intrusion in an unconfined aquifer. Environmental Pollution, 284, 117528. https://doi.org/10.1016/J.ENVPOL.2021.117528.

Krepsky, N., Lino, V. A. d. A., Silva dos Santos, F., & Naveira, C. A. C. (2021). Faecal bacteria density in tropical seawater: The Itanemas’ cove case study, Angra dos Reis, Brazil. Marine Pollution Bulletin, 164, 112027. https://doi.org/10.1016/J.MARPOLBUL.2021.112027.

Minu, A., Routh, J., Machiwa, J. F., & Pamba, S. (2020). Spatial variation of nutrients and primary productivity in the Rufiji Delta mangroves, Tanzania. African Journal of Marine Science, 42(2), 221–232. https://doi.org/10.2989/1814232X.2020.1776391.

Ojekunle, O. Z., Ojekunle, O. V., Adeyemi, A. A., Taiwo, A. G., Sangowusi, O. R., Taiwo, A. M., & Adekitan, A. A. (2016). Evaluation of surface water quality indices and ecological risk assessment for heavy metals in scrap yard neighbourhood. SpringerPlus, 5(1), 1–16. https://doi.org/10.1186/S40064-016-2158-9/TABLES/8.

Painter, S. C., Hartman, S. E., Kivimäe, C., Salt, L. A., Clargo, N. M., Daniels, C. J., Bozec, Y., Daniels, L., Allen, S., Hemsley, V. S., Moschonas, G., & Davidson, K. (2017). The elemental stoichiometry (C, Si, N, P) of the Hebrides Shelf and its role in carbon export. Progress in Oceanography, 159, 154–177. https://doi.org/10.1016/J.POCEAN.2017.10.001.

Pederson, C. L., Ge, Y., Lokier, S. W., Swart, P. K., Vonhof, H., Strauss, H., Schurr, S., Fiorini, F., Riechelmann, S., Licha, T., & Immenhauser, A. (2021). Seawater chemistry of a modern subtropical ‘epeiric’ sea: Spatial variability and effects of organic decomposition. Geochimica et Cosmochimica Acta, 314, 159–177. https://doi.org/10.1016/J.GCA.2021.09.024.

Policht-Latawiec, A., Bogdał, A., Kanownik, W., Kowalik, T., & Ostrowski, K. (2015). Variability of physicochemical properties of water of the transboundary poprad river. Journal of Ecological Engineering, 16(1), 100–109. https://doi.org/10.12911/22998993/593.

Putri, W. A. E., Purwiyanto, A. I. S., Fauziyah, ., Agustriani, F., & Suteja, Y. (2019). Kondisi Nitrat, Nitrit, Amonia, Fosfat Dan Bod Di Muara Sungai Banyuasin, Sumatera Selatan. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 11(1), 65–74. https://doi.org/10.29244/jitkt.v11i1.18861.

Ratih, I., Prihanta, W., & Susetyarini, R. E. (2015). Inventarisasi keanekaragaman makrozoobentos di daerah aliran sungai Brantas Kecamatan Ngoro Mojokerto sebagai sumber belajar biologi SMA kelas X. JPBI (Jurnal Pendidikan Biologi Indonesia), 1(2). https://doi.org/10.22219/jpbi.v1i2.3327.

Riter, J., Suryono, C. A., & Pratikto, I. (2018). Pemetaan Karakteristik Fisika-Kimia Perairan Dan Pemodelan Arus Di Kabupaten Sidoarjo. Journal of Marine Research, 7(3), 223–230. https://doi.org/10.14710/JMR.V7I3.25914.

Rochwulaningsih, Y., Sulistiyono, S. T., Utama, M. P., Masruroh, N. N., Rukayah, S., Efendy, M., & Gozan, M. (2019). Traditional knowledge system in palung salt-making in Bali Island. Journal of Ethnic Foods, 6(1), 4–10. https://doi.org/10.1186/s42779-019-0018-2.

Samsiyah, N., Moelyaningrum, A. D., Trirahayu, P., Peminatan, N., Lingkungan, K., Kesehatan, D., Kerja, K., Masyarakat, K., & Kunci, K. (2019). Garam Indonesia Berkualitas: Studi Kandungan Logam Berat Timbal (Pb) Pada Garam [The Quality of Indonesia Salt: Study of Heavy Metal Lead (Pb) Levels in the Salt]. Jurnal Ilmiah Perikanan Dan Kelautan, 11(1), 43–48. https://doi.org/10.20473/JIPK.V11I1.11058.

Satpathy, K. K., Mohanty, A. K., Sahu, G., Sarguru, S., Sarkar, S. K., & Natesan, U. (2011). Spatio-temporal variation in physicochemical properties of coastal waters off Kalpakkam, southeast coast of India, during summer, pre-monsoon and post-monsoon period. Environmental Monitoring and Assessment, 180(1–4), 41–62. https://doi.org/10.1007/s10661-010-1771-2.

Saturday, A., Lyimo, T. J., Machiwa, J., & Pamba, S. (2021). Spatio-temporal variations in physicochemical water quality parameters of Lake Bunyonyi, Southwestern Uganda. SN Applied Sciences, 3(7), 684. https://doi.org/10.1007/s42452-021-04672-8 Al-Mur, B. A. (2020). Assessing nutrient salts and trace metals distributions in the coastal water of Jeddah, Red Sea. Saudi Journal of Biological Sciences, 27(11), 3087–3098. https://doi.org/10.1016/j.sjbs.2020.07.012.

Andersen, J. H., Al-Hamdani, Z., Harvey, E. T., Kallenbach, E., Murray, C., & Stock, A. (2020). Relative impacts of multiple human stressors in estuaries and coastal waters in the North Sea–Baltic Sea transition zone. Science of the Total Environment, 704. https://doi.org/10.1016/j.scitotenv.2019.135316.

Anderson, L. A., & Sarmiento, J. L. (1994). Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem Cycles, 8(1), 65–80. https://doi.org/10.1029/93gb03318.

Apriani, M., Hadi, W., & Masduqi, A. (2018). Physicochemical Properties of Sea Water and Bittern in Indonesia: Quality Improvement and Potential Resources Utilization for Marine Environmental Sustainability. Journal of Ecological Engineering, Vol. 19(nr 3), 1–10. https://doi.org/10.12911/22998993/86150.

Ariyani, A. H. M., Harianto, H., Suharno, S., & Syaukat, Y. (2020). Factors Affecting Technology Adoption of Geoisolator on Solar Saltworks in East Java Province. AGRIEKONOMIKA, 9(1), 28–37. https://doi.org/10.21107/AGRIEKONOMIKA.V9I1.6856.G4633.

Arizuna, M., Suprapto, D., & Muskanonfola, M. R. (2014). Kandungan nitrat dan fosfat dalam air pori sedimen di Sungai dan Muara Sungai Wedung Demak. Management of Aquatic Resources Journal (MAQUARES), 3(1), 7–16. https://doi.org/10.14710/marj.v3i1.4281.

Baird, M. E., Mongin, M., Skerratt, J., Margvelashvili, N., Tickell, S., Steven, A. D. L., Robillot, C., Ellis, R., Waters, D., Kaniewska, P., & Brodie, J. (2021). Impact of catchment-derived nutrients and sediments on marine water quality on the Great Barrier Reef: An application of the eReefs marine modelling system. Marine Pollution Bulletin, 167. https://doi.org/10.1016/j.marpolbul.2021.112297.

Bakir, B., Zisykien, F. A., Umam, B. A., & Munib, A. (2020). Salinity and Sulphate Concentration Mapping and Analysis: Sea Surface at the Madura Island Context. IOP Conference Series: Earth and Environmental Science, 469(1). https://doi.org/10.1088/1755-1315/469/1/012105.

Båmstedt, U. (2019). Comparing static and dynamic incubations in primary production measurements under different euphotic and mixing depths. Hydrobiologia, 827(1), 155–169. https://doi.org/10.1007/S10750-018-3762-1/TABLES/4.

Bews, E., Booher, L., Polizzi, T., Long, C., Kim, J. H., & Edwards, M. S. (2021). Effects of salinity and nutrients on metabolism and growth of Ulva lactuca: Implications for bioremediation of coastal watersheds. Marine Pollution Bulletin, 166. https://doi.org/10.1016/j.marpolbul.2021.112199.

Bi, S., Lai, H., Guo, D., Liu, X., Wang, G., Chen, X., Liu, S., Yi, H., Su, Y., & Li, G. (2022). Spatio-temporal variation of bacterioplankton community structure in the Pearl River: impacts of artificial fishery habitat and physicochemical factors. BMC Ecology and Evolution, 22(1). https://doi.org/10.1186/s12862-022-01965-3.

Brus, D. J., & Knotters, M. (2008). Sampling design for compliance monitoring of surface water quality: A case study in a Polder area. Water Resources Research, 44(11), 11410. https://doi.org/10.1029/2007WR006123.

Davidson, K., Gowen, R. J., Harrison, P. J., Fleming, L. E., Hoagland, P., & Moschonas, G. (2014). Anthropogenic nutrients and harmful algae in coastal waters. Journal of Environmental Management, 146, 206–216. https://doi.org/10.1016/j.jenvman.2014.07.002.

Dehouck, P., Cordeiro, F., Snell, J., & De La Calle, B. (2016). State of the art in the determination of trace elements in seawater: a worldwide proficiency test. Analytical and Bioanalytical Chemistry. https://doi.org/10.1007/s00216-016-9390-6.

Deng, T., Duan, H.-F., & Keramat, A. (2022). Spatiotemporal characterization and forecasting of coastal water quality in the semi-enclosed Tolo Harbour based on machine learning and EKC analysis. Engineering Applications of Computational Fluid Mechanics, 16(1), 694–712. https://doi.org/10.1080/19942060.2022.2035257.

Deng, Y., Mao, C., Lin, Z., Su, W., Cheng, C., Li, Y., Gu, Q., Gao, R., Su, Y., & Feng, J. (2022). Nutrients, temperature, and oxygen mediate microbial antibiotic resistance in sea bass (Lateolabrax maculatus) ponds. Science of The Total Environment, 819, 153120. https://doi.org/10.1016/J.SCITOTENV.2022.153120.

Diamond, J. S., Bernal, S., Boukra, A., Cohen, M. J., Lewis, D., Masson, M., Moatar, F., & Pinay, G. (2021). Stream network variation in dissolved oxygen: Metabolism proxies and biogeochemical controls. Ecological Indicators, 131, 1470–160. https://doi.org/10.1016/J.ECOLIND.2021.108233.

Goto, T., Mori, H., Shiota, S., & Tomonaga, S. (2019). Metabolomics approach reveals the effects of breed and feed on the composition of chicken eggs. Metabolites, 9(10). https://doi.org/10.3390/metabo9100224.

Hassimi, H., Taleb, · A, Bouezmarni, · M, Karzazi, · O, Taleb, · M, Kherbeche, · A, & Debbaut, · V. (2019). The effect of the physicochemical conditions variations on the behavior of heavy metals trapped in polluted fluvial system sediments: the case of Oued Sebou, Morocco. Applied Water Science, 9, 17. https://doi.org/10.1007/s13201-019-0891-2.

Humanes, A., Ricardo, G. F., Willis, B. L., Fabricius, K. E., & Negri, A. P. (2017). Cumulative effects of suspended sediments, organic nutrients and temperature stress on early life history stages of the coral Acropora tenuis. Nature Publishing Group. https://doi.org/10.1038/srep44101.

Karthikeyan, P., Marigoudar, S. R., Mohan, D., Sharma, K. V., & Ramana Murthy, M. V. (2021). Prescribing sea water quality criteria for arsenic, cadmium and lead through species sensitivity distribution. Ecotoxicology and Environmental Safety, 208, 111612. https://doi.org/10.1016/J.ECOENV.2020.111612.

Ke, S., Chen, J., & Zheng, X. (2021). Influence of the subsurface physical barrier on nitrate contamination and seawater intrusion in an unconfined aquifer. Environmental Pollution, 284, 117528. https://doi.org/10.1016/J.ENVPOL.2021.117528.

Krepsky, N., Lino, V. A. d. A., Silva dos Santos, F., & Naveira, C. A. C. (2021). Faecal bacteria density in tropical seawater: The Itanemas’ cove case study, Angra dos Reis, Brazil. Marine Pollution Bulletin, 164, 112027. https://doi.org/10.1016/J.MARPOLBUL.2021.112027.

Minu, A., Routh, J., Machiwa, J. F., & Pamba, S. (2020). Spatial variation of nutrients and primary productivity in the Rufiji Delta mangroves, Tanzania. African Journal of Marine Science, 42(2), 221–232. https://doi.org/10.2989/1814232X.2020.1776391.

Ojekunle, O. Z., Ojekunle, O. V., Adeyemi, A. A., Taiwo, A. G., Sangowusi, O. R., Taiwo, A. M., & Adekitan, A. A. (2016). Evaluation of surface water quality indices and ecological risk assessment for heavy metals in scrap yard neighbourhood. SpringerPlus, 5(1), 1–16. https://doi.org/10.1186/S40064-016-2158-9/TABLES/8.

Painter, S. C., Hartman, S. E., Kivimäe, C., Salt, L. A., Clargo, N. M., Daniels, C. J., Bozec, Y., Daniels, L., Allen, S., Hemsley, V. S., Moschonas, G., & Davidson, K. (2017). The elemental stoichiometry (C, Si, N, P) of the Hebrides Shelf and its role in carbon export. Progress in Oceanography, 159, 154–177. https://doi.org/10.1016/J.POCEAN.2017.10.001.

Pederson, C. L., Ge, Y., Lokier, S. W., Swart, P. K., Vonhof, H., Strauss, H., Schurr, S., Fiorini, F., Riechelmann, S., Licha, T., & Immenhauser, A. (2021). Seawater chemistry of a modern subtropical ‘epeiric’ sea: Spatial variability and effects of organic decomposition. Geochimica et Cosmochimica Acta, 314, 159–177. https://doi.org/10.1016/J.GCA.2021.09.024.

Policht-Latawiec, A., Bogdał, A., Kanownik, W., Kowalik, T., & Ostrowski, K. (2015). Variability of physicochemical properties of water of the transboundary poprad river. Journal of Ecological Engineering, 16(1), 100–109. https://doi.org/10.12911/22998993/593.

Putri, W. A. E., Purwiyanto, A. I. S., Fauziyah, ., Agustriani, F., & Suteja, Y. (2019). Kondisi Nitrat, Nitrit, Amonia, Fosfat Dan Bod Di Muara Sungai Banyuasin, Sumatera Selatan. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 11(1), 65–74. https://doi.org/10.29244/jitkt.v11i1.18861.

Ratih, I., Prihanta, W., & Susetyarini, R. E. (2015). Inventarisasi keanekaragaman makrozoobentos di daerah aliran sungai Brantas Kecamatan Ngoro Mojokerto sebagai sumber belajar biologi SMA kelas X. JPBI (Jurnal Pendidikan Biologi Indonesia), 1(2). https://doi.org/10.22219/jpbi.v1i2.3327.

Riter, J., Suryono, C. A., & Pratikto, I. (2018). Pemetaan Karakteristik Fisika-Kimia Perairan Dan Pemodelan Arus Di Kabupaten Sidoarjo. Journal of Marine Research, 7(3), 223–230. https://doi.org/10.14710/JMR.V7I3.25914.

Rochwulaningsih, Y., Sulistiyono, S. T., Utama, M. P., Masruroh, N. N., Rukayah, S., Efendy, M., & Gozan, M. (2019). Traditional knowledge system in palung salt-making in Bali Island. Journal of Ethnic Foods, 6(1), 4–10. https://doi.org/10.1186/s42779-019-0018-2.

Samsiyah, N., Moelyaningrum, A. D., Trirahayu, P., Peminatan, N., Lingkungan, K., Kesehatan, D., Kerja, K., Masyarakat, K., & Kunci, K. (2019). Garam Indonesia Berkualitas: Studi Kandungan Logam Berat Timbal (Pb) Pada Garam [The Quality of Indonesia Salt: Study of Heavy Metal Lead (Pb) Levels in the Salt]. Jurnal Ilmiah Perikanan Dan Kelautan, 11(1), 43–48. https://doi.org/10.20473/JIPK.V11I1.11058.

Satpathy, K. K., Mohanty, A. K., Sahu, G., Sarguru, S., Sarkar, S. K., & Natesan, U. (2011). Spatio-temporal variation in physicochemical properties of coastal waters off Kalpakkam, southeast coast of India, during summer, pre-monsoon and post-monsoon period. Environmental Monitoring and Assessment, 180(1–4), 41–62. https://doi.org/10.1007/s10661-010-1771-2.

Saturday, A., Lyimo, T. J., Machiwa, J., & Pamba, S. (2021). Spatio-temporal variations in physicochemical water quality parameters of Lake Bunyonyi, Southwestern Uganda. SN Applied Sciences, 3(7), 684. https://doi.org/10.1007/s42452-021-04672-8.

Sharples, J., Mayor, D. J., Poulton, A. J., Rees, A. P., & Robinson, C. (2019). Shelf Sea Biogeochemistry: Nutrient and carbon cycling in a temperate shelf sea water column. Progress in Oceanography, 177, 102182. https://doi.org/10.1016/J.POCEAN.2019.102182.

Souaissi, Z., Ouarda, T. B. M. J., & St-Hilaire, A. (2021). River water temperature quantiles as thermal stress indicators: Case study in Switzerland. Ecological Indicators, 131. https://doi.org/10.1016/J.ECOLIND.2021.108234.

Suzuki, T., Tanaka, R., Tahara, M., Isamu, Y., Niinae, M., Lin, L., Wang, J., Luh, J., & Coronell, O. (2016). Relationship between performance deterioration of a polyamide reverse osmosis membrane used in a seawater desalination plant and changes in its physicochemical properties. Water Research, 100, 326–336. https://doi.org/10.1016/J.WATRES.2016.04.068.

Vigouroux, G., Kari, E., Beltrán-Abaunza, J. M., Uotila, P., Yuan, D., Destouni, G., & Virgílio Cruz, J. (2021). Trend correlations for coastal eutrophication and its main local and whole-sea drivers-Application to the Baltic Sea. Science of the Total Environment, 779, 146367. https://doi.org/10.1016/j.scitotenv.2021.146367.

Wahyuningsih, N., Suharsono, S., & Fitrian, Z. (2021). Kajian kualitas air laut di perairan Kota Bontang Provinsi Kalimantan Timur. Jurnal Riset Pembangunan, 4(1), 56–66. https://doi.org/10.36087/jrp.v4i1.94.

Weinreben, S., & Feistel, R. (2019). Anomalous salinity-density relations of seawater in the eastern central Atlantic. Deep Sea Research Part I: Oceanographic Research Papers, 154, 103160. https://doi.org/10.1016/J.DSR.2019.103160.

Zhang, M., Chen, G., Luo, Z., Sun, X., & Xu, J. (2020). Spatial distribution, source identification, and risk assessment of heavy metals in seawater and sediments from Meishan Bay, Zhejiang coast, China. Marine Pollution Bulletin, 156, 111217. https://doi.org/10.1016/J.MARPOLBUL.2020.111217.

Diterbitkan

2024-01-22

Cara Mengutip

Wicaksono, A., Jayanthi, O. W. ., Efendy, M. ., Nuzula, N. I. ., Kartika, A. G. D. ., Rahmadani, P. A. ., Putri, D. S. ., Hariyanti, A., & Syaifullah, M. . (2024). Distribusi Mineral dan Cemaran di Perairan Laut Sebagai Pemanfaatan Air Baku Garam Berkualitas. JST (Jurnal Sains Dan Teknologi), 12(3), 593–602. https://doi.org/10.23887/jstundiksha.v12i3.43780

Terbitan

Bagian

Articles