Kinetika Proses Ekstraksi Katalis Bekas Ni/γ–Al2O3 dengan Pelarut Asam Sulfat: Model Shrinking Core dan Model Lump

Penulis

  • Elsha Pamida Bahri Universitas Katolik Parahyangan, Bandung, Indonesia
  • Ivanna Crecentia Narulita Simanungkalit Universitas Katolik Parahyangan, Bandung, Indonesia
  • Ratna Frida Susanti Universitas Katolik Parahyangan, Bandung, Indonesia
  • Gelar Panji Gemilar PT. Petrokimia Gresik, Gresik, Indonesia
  • Widi Astuti Balai Penelitian Teknologi Mineral, Badan Riset dan Inovasi Nasional, Tanjung Bintang, Indonesia
  • Himawan Tri Bayu Murti Petrus Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Kevin Cleary Wanta Universitas Katolik Parahyangan, Bandung, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v12i3.46264

Kata Kunci:

ekstraksi, katalis bekas, kinetika, model lump, model shrinking core

Abstrak

Tahapan scale–up dari suatu proses kimia, kinetika atau mekanisme dari proses tersebut perlu untuk dipelajari. Hal ini dilakukan untuk meminimalkan kesalahan dalam tahap perancangan suatu alat proses. Studi kali ini bertujuan untuk mengevaluasi model matematika yang dapat menggambarkan fenomena riil dari proses ekstraksi katalis bekas Ni/γ–Al2O3 dengan menggunakan pelarut asam sulfat (H2SO4). Studi ini melibatkan dua tahapan utama, yaitu tahap pengambilan data eksperimen dan tahap simulasi model matematika terhadap data eksperimen. Data untuk studi kinetika diperoleh melalui eksperimen proses ekstraksi dalam kondisi atmosferis di mana temperatur operasi divariasikan pada 30, 60, dan 85oC. Larutan asam sulfat yang digunakan memiliki konsentrasi 1 M, sedangkan ukuran partikel katalis kurang 74 mikron. Proses ekstraksi dilakukan selama 120 menit dengan pengambilan sampel secara berkala. Kandungan nikel pada sampel tersebut dianalisis dengan menggunakan instrumen Atomic Absorption Spectroscopy (AAS).  Hasil eksperimen menunjukkan bahwa pada temperatur 85oC dan waktu ekstraksi 120 menit, nikel yang diperoleh paling banyak dibandingkan kondisi operasi lainnya, yaitu sebesar 16,95%. Studi kinetika terhadap data eksperimen tersebut menunjukkan bahwa model lump merupakan model kinetika terbaik untuk menggambarkan fenomena fisis yang terjadi selama proses ekstraksi ini berlangsung. Model lump memberikan persentase kesalahan rata–rata yang lebih kecil dibandingkan model shrinking core. Hal ini mengindikasikan bahwa tahapan difusi internal dan reaksi kimia merupakan tahapan yang mengendalikan proses ekstraksi ini.

Referensi

Arslanoğlu, H., & Yaraş, A. (2019). Recovery of precious metals from spent Mo–Co–Ni/Al2O3 catalyst in organic acid medium: Process optimization and kinetic studies. Petroleum Science and Technology, 37(19), 2081–2093. https://doi.org/10.1080/10916466.2019.1618867.

Chen, W.-S., & Ho, H.-J. (2018). Leaching behavior analysis of valuable metals from lithium-ion batteries cathode material. Key Engineering Materials, 775, 419–426. https://doi.org/10.4028/ www.scientific.net/KEM.775.419.

Chiranjeevi, T., Pragya, R., Gupta, S., Gokak, D. T., & Bhargava, S. (2016). Minimization of Waste Spent Catalyst in Refineries. Procedia Environmental Sciences, 35, 610–617. https://doi.org/10.1016/j.proenv.2016.07.047.

Dong, Y.-bo, Liu, Y., & Lin, H. (2018). Leaching behavior of V, Pb, Cd, Cr, and As from stone coal waste rock with different particle sizes. International Journal of Minerals, Metallurgy and Materials, 25(8), 861–870. https://doi.org/10.1007/s12613-018-16 35-2.

Ebrahimzade, H., Khayati, G. R., & Schaffie, M. (2018). Leaching kinetics of valuable metals from waste Li-ion batteries using neural network approach. Journal of Material Cycles and Waste Management, 20(4), 2117–2129. https://doi.org/10.1007/s10163-018-0766-x.

Faraji, F., Alizadeh, A., Rashchi, F., & Mostoufi, N. (2020). Kinetics of leaching: A review. Reviews in Chemical Engineering, 38(2), 113–148. https://doi.org/10.1515/revce-2019-0073.

Ilhan, S., & Akgün, D. (2021). Leaching Kinetics of Mo, Ni, and Al Oxides from Spent Nickel–Molybdenum Hydro- desulfurization Catalyst in H2SO4 Solution. Journal of Sustainable Metallurgy, 7(2), 470–480. https://doi.org/10.1007/s40831-021-00 351-5.

Ilyas, S., Srivastava, R. R., Kim, H., & Cheema, H. A. (2020). Hydrometallurgical recycling of palladium and platinum from exhausted diesel oxidation catalysts. Separation and Purification Technology, 248, 1–8. https://doi.org/10.1016/j.seppur.2020.117029.

Li, J., Yang, Y., Wen, Y., Liu, W., Chu, Y., Wang, R., & Xu, Z. (2020). Leaching kinetics and mechanism of laterite with NH4 Cl-HCl solution. Minerals, 10(9), 1–11. https://doi.org/10.3390/min1009 0754.

Li, Z., Xie, Z., Deng, J., He, D., Zhao, H., & Liang, H. (2021). Leaching kinetics of rare earth elements in phosphoric acid from phosphate rock. Metals, 11(2), 1–17. https://doi.org/10.3390/met110202 39.

Liu, J. -lia., Yin, Z. -la., Li, X. -ha., Hu, Q. -yan., & Liu, W. (2019). Recovery of valuable metals from lepidolite by atmosphere leaching and kinetics on dissolution of lithium. Transactions of Nonferrous Metals Society of China, 29(3), 641–649. https://doi.org/10.1016/S1003-6326(19)64974-5.

Mangini, L. F. K., Valt, R. B. G., Ponte, M. J. J. de S., & Ponte, H. de A. (2020). Vanadium removal from spent catalyst used in the manufacture of sulfuric acid by electrical potential application. Separation and Purification Technology, 246. https://doi.org/10. 1016/j.seppur.2020.116854.

Marafi, M., & Rana, M. S. (2018). Metal leaching from refinery waste hydroprocessing catalyst. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 53(11), 951–959. https://doi.org/10.1080 /10934529.2018.1470802.

Mirwan, A., Susianto, Altway, A., & Handogo, R. (2017). A modified shrinking core model for leaching of aluminum from sludge solid waste of drinking water treatment. International Journal of Technology, 8(1), 19–26. https://doi.org/10.14716/ijtech.v8i1.3233.

Mohanty, C., Behera, S. S., Marandi, B., Tripathy, S. K., Parhi, P. K., & Sanjay, K. (2021). Citric acid mediated leaching kinetics study and comprehensive investigation on extraction of vanadium (V) from the spent catalyst. Separation and Purification Technology, 276. https://doi.org/10.1016/j.seppur.2021.119377.

Nugroho, M. E. C., Sutijan, Prasetya, A., & Astuti, W. (2021). Recovery of cobalt and molybdenum from spent catalyst using citric acid. IOP Conference Series: Earth and Environmental Science, 882(1). https://doi.org/10.10 88/1755-1315/882/1/012006.

Pradhan, D., Pattanaik, A., Krishna Samal, D. P., Sukla, L. B., & Kim, D. J. (2020). Recovery of Mo, V and Ni from spent catalyst using leaching and solvent extraction. Materials Today: Proceedings, 30, 322–325. https://doi.org/10.1016/j.matpr.2020.01.614.

Raghupathy, L., & Chaturvedi, A. (2013). Secondary resources and recycling in developing economies. Science of the Total Environment, 461–462. https://doi.org/10.1016/j.scitotenv.2013.05.041.

Rogozhnikov, D. A., Shoppert, A. A., Dizer, O. A., Karimov, K. A., & Rusalev, R. E. (2019). Leaching kinetics of sulfides from refractory gold concentrates by nitric acid. Metals, 9(4). https://doi.org/10.3390/met9040465.

Setiawan, H., Petrus, H. T. B. M., & Perdana, I. (2019). Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid. International Journal of Minerals, Metallurgy and Materials, 26(1), 98–107. https://doi.org/10.1007/ s12613-019-1713-0.

Sposato, C., Catizzone, E., Blasi, A., Forte, M., Romanelli, A., Morgana, M., Braccio, G., Giordano, G., & Migliori, M. (2021). Towards the circular economy of rare earth elements: Lanthanum leaching from spent FCC catalyst by acids. Processes, 9(8). https://doi.org/10.3390/pr9081369.

Wang, T., Ren, J., Ravindra, A. V, Lv, Y., & Le, T. (2022). Kinetics of Ni, V and Fe Leaching from a Spent Catalyst in Microwave-Assisted Acid Activation Process. Molecules, 27(7), 2078. https://doi.org/10.3390/molecules27072078.

Wanta, K. C., Astuti, W., Perdana, I., & Petrus, H. T. B. M. (2020). Kinetic study in atmospheric pressure organic acid leaching: Shrinking core model versus lump model. Minerals, 10(7), 1–10. https://doi.org/10.3390/min10070613.

Wanta, K. C., Astuti, W., Petrus, H. T. B. M., & Perdana, I. (2022). Product Diffusion-Controlled Leaching of Nickel Laterite using Low Concentration Citric Acid Leachant at Atmospheric Condition. International Journal of Technology, 13(2), 410. https://doi.org/10.14716/ijtech.v13i2.4641.

Wanta, K. C., Petrus, H. T. B. M., Perdana, I., & Astuti, W. (2017). Uji Validitas Model Shrinking Core terhadap Pengaruh Konsentrasi Asam Sitrat dalam Proses Leaching Nikel Laterit. Jurnal Rekayasa Proses, 11(1), 30–35.

Wiecka, Z., Rzelewska-Piekut, M., Cierpiszewski, R., Staszak, K., & Regel-Rosocka, M. (2020). Hydrometallurgical recovery of cobalt(II) from spent industrial catalysts. Catalysts, 10(1). https://doi.org/10.3390/catal10010061.

Wu, W., Wang, C., Bao, W., & Li, H. (2018). Selective reduction leaching of vanadium and iron by oxalic acid from spent V2O5-WO3/TiO2 catalyst. Hydrometallurgy, 179, 52–59. https://doi.org/10.1016/j.hydromet.2018.05.021.

Yaraş, A., & Arslanoğlu, H. (2020). Extraction of selected metals from spent hydrodesulfurization catalyst using alkali leaching agent. Separation Science and Technology, 55(11), 2037–2048. https://doi.org/10.1080/ 01496395.2019.1673412.

Zhang, D., Liu, Y., Hu, Q., Ke, X., Yuan, S., Liu, S., Ji, X., & Hu, J. (2020). Sustainable recovery of nickel, molybdenum, and vanadium from spent hydroprocessing catalysts by an integrated selective route. Journal of Cleaner Production, 252, 1–9. https://doi.org/10.1016/j.jclepro.2019.119763.

Diterbitkan

2024-01-22

Cara Mengutip

Bahri, E. P., Simanungkalit, I. C. N., Susanti, R. F., Gemilar, G. P., Astuti, W., Petrus, H. T. B. M., & Wanta, K. C. (2024). Kinetika Proses Ekstraksi Katalis Bekas Ni/γ–Al2O3 dengan Pelarut Asam Sulfat: Model Shrinking Core dan Model Lump. JST (Jurnal Sains Dan Teknologi), 12(3), 739–747. https://doi.org/10.23887/jstundiksha.v12i3.46264

Terbitan

Bagian

Articles