Stabilisasi Orientasi Kamera 3-Axis Berbasis Pengendali PID untuk Fabrikasi Gimbal Ekonomis dan Praktis

Penulis

  • Ignatius Joddy Pratama Wibowo Fakultas Teknik Elektronika dan Komputer, Universitas Kristen Satya Wacana, Salatiga, Indonesia
  • Gunawan Dewantoro Fakultas Teknik Elektronika dan Komputer, Universitas Kristen Satya Wacana, Salatiga, Indonesia
  • Deddy Susilo Fakultas Teknik Elektronika dan Komputer, Universitas Kristen Satya Wacana, Salatiga, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v12i3.47080

Kata Kunci:

stabilizer, kamera, 3-axis, STorM32, PID

Abstrak

Gimbal atau stabilizer menjadi salah satu bagian penting dalam berkembangnya dunia videografi yang mengendalikan gerakan kamera pada sumbu x, y, dan z untuk menjaga orientasi kamera. Namun gimbal komersial yang memiliki respon stabilisasi tinggi masih tergolong mahal untuk hobbyist. Untuk itulah, penelitian ini mengembangkan gimbal yang praktis dan ekonomis menggunakan modul Inertial Measurement Unit (IMU) yang terdiri dari sensor accelerometer dan gyroscope. Kedua sensor tersebut dikombinasikan menjadi complementary filter sehingga mampu mengukur sudut baik ketika gimbal dalam keadaan diam maupun bergerak. Motor DC brushless dipasang pada tiap sumbu, yang apabila ketiga sumbu tersebut ditarik garis lurus maka akan berpotongan pada sebuah titik di mana kamera akan diletakkan. Stabilizer ini dikendalikan dengan software STorM32 yang terkoneksi dengan 3 motor DC brushless yang memiliki fungsi pitch, roll, dan yaw serta sensor IMU MPU6050 untuk menunjang kinerja maksimal dari stabilizer. Penalaan parameter PID serta pengaturan kestabilan dan redaman telah menghasilkan keseimbangan pada stabilizer secara maksimal. Hasil pengujian menunjukkan bahwa stabilizer mampu mengkompensasi sudut yaw 5,52o selama 3,57 detik. Dengan rangka yang ergonomis, pengambilan video menggunakan stabilizer ini menjadi lebih baik dan stabil.

Referensi

Abdo, M. M., Vali, A. R., Toloei, A. R., & Arvan, M. R. (2014). Stabilization loop of a two axes gimbal system using self-tuning PID type fuzzy controller. ISA Transactions, 53(2), 591–602. https://doi.org/10.1016/j.isatra.2013.12.008.

Ahi, B., & Nobakhti, A. (2018). Hardware implementation of an ADRC controller on a gimbal mechanism. IEEE Transactions on Control Systems Technology, 26(6), 2268–2275. https://doi.org/10.1109/TCST.2017.2746059.

Ahmad, M. H., Osman, K., Zakeri, M. F. M., & Samsudin, S. I. (2021). Mathematical modelling and PID controller design for two DOF gimbal system. IEEE 17th International Colloquium on Signal Processing & Its Applications (CSPA). https://doi.org/10.1109/CSPA52141.2021.9377274.

Aniekan, I., Ikechukwu, O., & Paul, S. (2016). Comparative analysis of a PID controller using Ziegler- Nichols and Auto Tuning Method. International Academic Institute for Science and Technology, 3(10), 1–16. https://doi.org/10.1109/IC4.2015.7375580.

Ban, J., Chen, G., Meng, Y., & Shu, J. (2022). Calibration method for misalignment angles of a fiber optic gyroscope in single-axis rotational inertial navigation systems. Optics Express, 30(5), 6487–6499. https://doi.org/10.1364/OE.449629.

Byun, G.-S., & Cho, H.-R. (2016). The stabilization loop design for a drone-mounted camera gimbal system Using intelligent-PID controller. The Journal of The Korea Institute of Intelligent Transport Systems, 15(1), 102–108. https://doi.org/10.12815/kits.2016.15.1.102.

Chen, P. S. M., Tien, D. T. K., & Chung, E. C. Y. (2022). Novel adjustable platform for camera mount. Journal of Physics: Conference Series, 2222, 1–15. https://doi.org/10.1088/1742-6596/2222/1/012011.

Danh, N. C. (2021). The stability of a two-axis gimbal system for the camera. The Scientific World Journal, 2021, 1–8. https://doi.org/10.1155/2021/9958848.

Duan, Q., Zhou, X., He, Q., Chen, X., Liu, W., & Mao, Y. (2021). Pointing control design based on the PID type-III control loop for two-axis gimbal systems. Sensors and Actuators A: Physical, 331, 112923. https://doi.org/10.1016/j.sna.2021.112923.

Erfianto, B., & Rizal, A. (2022). IMU-based respiratory signal processing using cascade complementary filter method. Journal of Sensors, 2022, 1–16. https://doi.org/10.1155/2022/7987159.

Hazari, M. R., Jahan, E., Siraj, M. E., Khan, M. T. I., & Saleque, A. M. (2014). Design of a Brushless DC (BLDC) motor controller. International Conference on Electrical Engineering and Information & Communication Technology, 1–6. https://doi.org/10.1109/ICEEICT.2014.6919048.

Hidayat, D. (2017). Implementasi pengontrol PID pada model fisis elektronik. Eksakta: Berkala Ilmiah Bidang MIPA, 18(2), 178–185. https://doi.org/10.24036/eksakta/vol18-iss02/75.

Hidayat, R., Komarudin, M., & Raharjo, Y. (2014). Rancang Bangun Sistem Penstabil Kamera Untuk Foto Udara Berbasis Wahana Udara Quadcopter. Electrician: Jurnal Rekayasa Dan Teknologi Elektro, 8(2), 112–123. https://doi.org/10.23960/elc.v8n2.130.

Hidayath, M. I. T., Wicaksono, M. F. A., & Pohan, G. A. (2022). Analisa Pengaruh Manuver Dan Kecepatan Pada Pesawat Tanpa Awak Tipe Fixed Wing Dengan Variasi Airfoil Berbasis Ardupilot. Jurnal Mesin Material Manufaktur Dan Energi, 3(1), 25–38. https://doi.org/10.47549/jmmme.v3i1.5662.

Kim, M., Byun, G.-S., Kim, G.-H., & Choi, M.-H. (2016). The stabilizer design for a drone-mounted camera gimbal system using intelligent-PID controller and tuned mass damper. International Journal of Control and Automation, 9(5), 387–394. https://doi.org/10.14257/ijca.2016.9.5.37.

Kumar, S. S., & Anitha, G. (2021). A novel self-tuning fuzzy logic-based PID controllers for two-axis gimbal stabilization in a missile seeker. International Journal of Aerospace Engineering, 1–12. https://doi.org/10.1155/2021/8897556.

Kurbanov, R., & Litvinov, M. (2020). Development of a gimbal for the Parrot Sequoia multispectral camera for the UAV DJI Phantom 4 Pro. IOP Conference Series: Materials Science and Engineering, 1001(1), 12–62. https://doi.org/10.1088/1757-899X/1001/1/012062.

lai Guo, C., Ren, H., Xing, Y., Lang, J., & Xiong, L. (2019). The Research of Four Rotor Aircraft based on STM32. IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 1671–1675. https://doi.org/10.1109/ITNEC.2019.8729479.

Lee, D. H., Tran, D.-Q., Kim, Y.-B., & Chakir, S. (2020). A robust double active control system design for disturbance suppression of a two-axis gimbal system. Electronics, 9(10), 1–18. https://doi.org/10.3390/electronics9101638.

Manmathakrishnan, P., & Pannerselvam, R. (2019). Design and performance evaluation of single axis gyrostabilizer for motion stabilization of a scaled Barge model. OCEANS 2019 MTS/IEEE SEATTLE. https://doi.org/10.23919/OCEANS40490.2019.8962634.

Meng, Y. (2022). Research on the design of handheld gimbals based on KANO model. International Conference on Human-Computer Interaction, 200–212. https://doi.org/10.1007/978-3-031-05906-3_15.

Mudarris, M., & Zain, S. G. (2020). Implementasi sensor Inertial Meansurenment Unit (IMU) untuk monitoring perilaku roket. Aviation Electronics, Information Technology, Telecommunications, Electricals, Controls, 2(1), 55–64. https://doi.org/10.28989/avitec.v2i1.610.

Nguyen, D.-H., & Nguyen, V.-H. (2019). Robust control of two-axis gimbal system. 2019 International Symposium on Electrical and Electronics Engineering (ISEE). https://doi.org/10.1109/ISEE2.2019.8921070.

Noordin, A., Basri, M. A. M., & Mohamed, Z. (2018). Sensor fusion algorithm by complementary filter for attitude estimation of quadrotor with low-cost IMU. Telkomnika, 16(2), 868–875. https://doi.org/10.12928/TELKOMNIKA.v16i2.9020.

Rafiq, A. A., Rohman, W. N., & Riyanto, R. (2020). Development of a Simple and Low-cost Smartphone Gimbal with MPU-6050 Sensor. Journal of Robotics and Control, 1(4), 136–140. https://doi.org/10.18196/jrc.1428.

Rajesh, R. J., & Ananda, C. M. (2015). PSO tuned PID controller for controlling camera position in UAV using 2-axis gimbal. International Conference on Power and Advanced Control Engineering (ICPACE), 128–133. https://doi.org/10.1109/ICPACE.2015.7274930.

Rosa-Vidal, R., Bardallo, J. A., Rodriguez, J. M., & Vazquez, A. R. (2022). A mobile platform for movement tracking based on a fast-execution-time optical-flow algorithm. IEEE Transactions on Circuits and Systems I: Regular Papers, 69(4), 1715–1727. https://doi.org/10.1109/TCSI.2021.3136656.

Sakharwade, S. G., & Nagpal, S. (2019). Analysis of transient belt stretch for horizontal and inclined belt conveyor system. International Journal of Mathematical, Engineering and Management Sciences, 4(5), 1169. https://doi.org/10.33889/IJMEMS.2019.4.5-092.

Sayed, M., Cinca, R., Costanza, E., & Brostow, G. (2022). LookOut! Interactive camera gimbal controller for filming long takes. ACM Transactions on Graphics, 41(3), 1–16. https://doi.org/10.1145/3506693.

Setiawan, A., Susilo, D., & Dewantoro, G. (2021). Self-balancing robot beroda dua dengan metode PID. Jurnal Sains Dan Teknologi, 10(1), 51–60. https://doi.org/10.23887/jstundiksha.v10i1.32407.

Sinha, S. N. (2021). Pan-Tilt-Zoom (PTZ) Camera. In Computer Vision. Springer. https://doi.org/10.1007/978-3-030-63416-2_496.

Wicaksono, R. H. T., & Rusimamto, P. W. (2020). Perancangan Sistem Kontrol Posisi Sumbu Elevasi Gun Pada Turret-Gun Menggunakan Kontroler PID Berbasis Arduino Mega. Jurnal Teknik Elektro, 9(1). https://doi.org/10.26740/jte.v9n1.p%25p.

Zhou, W., Ning, C., Lu, D., & Wi, S. (2020). Design and implementation of UAV self stabilizing PTZ. Journal of Physics: Conference Series, 1570, 1–5. https://doi.org/10.1088/1742-6596/1570/1/012038.

Diterbitkan

2024-01-22

Cara Mengutip

Wibowo, I. J. P., Dewantoro, G., & Susilo, D. (2024). Stabilisasi Orientasi Kamera 3-Axis Berbasis Pengendali PID untuk Fabrikasi Gimbal Ekonomis dan Praktis. JST (Jurnal Sains Dan Teknologi), 12(3), 681–690. https://doi.org/10.23887/jstundiksha.v12i3.47080

Terbitan

Bagian

Articles