Refrigerator Performance With Natural Refrigerant (R1270) Double Pipe Heat Exchanger, Various Capillary Pipe Lengths

Penulis

  • Kamin Sumardi Universitas Pendidikan Indonesia
  • Asri Ratnasari Universitas Pendidikan Indonesia, Bandung, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v12i1.48287

Kata Kunci:

Heat Exchanger, Pipa Kapiler, R1270

Abstrak

Refrigerator technology continues to develop towards a better and more efficient direction. Refrigerator must be given a touch of innovation to get the best performance. This study aims to obtain data on the performance of refrigerators with double pipe heat exchanger innovation and variations in the length of the capillary tube. The research method used is experimental. The experiment was carried out on a 1/6 PK refrigerator trainer, the ratio of the size of the double pipe heat exchanger was 1/4:1/2, and the variations in the length of the capillary pipe were 1.5m, 2m, 2.5m, and 2.75m. The diameter of the capillary tube is maintained at 0.028 inches. The initial refrigerant used is refrigerant R-134a, which is then retrofitted by the drop in substitute method by refrigerant R-1270 as the refrigerant being tested. The load used is 1.5L mineral water. The results showed that the use of 1.5 m capillary pipe and double pipe heat exchanger was able to increase the value of the refrigeration effect up to 49%, the value of work efficiency (CoP) increased by 22% compared to the refrigerator system using R-134a. Electric power consumption has decreased by up to 25%, thereby reducing the cost of electricity bills. This study has shown that the use of refrigerant R-1270 in a refrigerator with a double pipe heat exchanger and a long capillary tube with a diameter of 0.028 inches improves performance and saves electricity consumption.

Referensi

Ajuka, L. O., Odunfa, M. K., Ohunakin, O. S., & Oyewola, M. O. (2017). Energy and exergy analysis of vapour compression refrigeration system using selected eco-friendly hydrocarbon refrigerants enhanced with tio2-nanoparticle. International Journal of Engineering & Technology, 6(4), 91–97. https://doi.org/10.1441/ijet.v6i4.7099.

Aktemur, C., & Öztürk, İ. T. (2022). Thermodynamic performance enhancement of booster assisted ejector expansion refrigeration systems with R1270/CuO nano-refrigerant. Energy Conversion and Management, 253, 115191. https://doi.org/10.1016/ j.enconman.2021.115191.

Aziz, A., Siregar, I. A. R., Mainil, R. I., & Mainil, A. K. (2020). Komparasi Kinerja Refrigerator dengan Refrigeran Hidrokarbon HCR134a Alternatif Pengganti R134a pada Panjang Pipa Kapiler 1,25m. Jurnal Sains Dan Teknologi, 19(2), 76–81. Retrieved from https://jst.ejournal.unri.ac.id/index.php/JST/article/download/7628/6627.

Cabello, R., Sánchez, D., Llopis, R., Andreu-Nacher, A., & Calleja-Anta, D. (2022). Energy impact of the Internal Heat Exchanger in a horizontal freezing cabinet. Experimental evaluation with the R404A low-GWP alternatives R454C, R455A, R468A, R290 and R1270. International Journal of Refrigeration, 137, 22–33. https://doi.org/10.1016/j.ijrefrig.2022.02.007.

Dinçer, I., & Kanoǧlu, M. (2010). Refrigeration Systems and Applications 2nd ed. West Sussex: John Wiley & Sons, Ltd.

El Sayed, A. R., El Morsi, M., & Mahmoud, N. A. (2017). Thermodynamic analysis of a simple refrigeration cycle using hydrocarbon refrigerants as substitute to R22. Int. J. Adv. Eng. Manage. Res, 2(2), 245-273.

Emani, M. S., & Mandal, B. K. (2018). The use of natural refrigerants in refrigeration and air conditioning systems: a review. In IOP Conference Series: Materials Science and Engineering, 377(1), p.012064. Retrieved from https://iopscience.iop.org/article/10.1088/1757-899X/377/1/012064.

Fang, X., Lin, J., & Ma, X. (2021). Simulation study on compression characteristics of low GWP refrigerants in the cylinder of rotary compressors. ,. Applied Thermal Engineering, 193, 117056. Retrieved from https://doi.org/10.1016/j.applthermaleng.2021.117056.

Ghani, S., Gamaledin, S. M. A., Rashwan, M. M., & Atieh, M. A. (2018). Experimental investigation of double-pipe heat exchangers in air conditioning applications. Energy and Buildings, 158, 801-811. https://doi.org/10.1016/j.enbuild.2017.10.051.

Hidayati, B., & Ardiansyah, A. (2018). Analisa Pengaruh Panjang Pipa Kapiler terhadap Performansi Hard Ice Cream Maker dengan menggunakan R-22 dan MC-22. PETRA: Jurnal Teknologi Pendingin Dan Tata Udara, 5(1), 1–6. Retrieved from http://jurnal.polsky.ac.id/index.php/petra/article/download/147/143/%0A.

Homzah, O. F., Hendradinata, H., & Akui, B. (2017). Pengaruh Variasi Panjang dan Diameter Pipa Kapiler terhadap CoP Pada Trainer Sistem Pendingin Dasar. PETRA: Jurnal Teknologi Pendingin Dan Tata Udara, 3(1), 15–22. Retrieved from https://jurnal.polsky.ac.id/index.php/petra/article/view/141/137.

Ku, H. K. (2014). Performance Analysis of R-1270 (Propylene) Refrigeration System Using Internal Heat Exchanger. Journal of Power System Engineering, 18(4), 36–42. https://doi.org/10.9726/kspse.2014.18.4.036.

Lacerda, A., De Carvalho, U., Henrique, F., Corrêa De Oliveira, P., De Lima, R., Mariano, R., … Souto-Maior, A. M. (2010). BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY Growth, Sporulation and Production of Bioactive Compounds by Bacillus subtilis R14. Arch. Biol. Technol. V, 53353(3), 643–652.

Liu, J., & Lin, Z. (2020). Thermodynamic analysis of a novel dual-temperature air-source heat pump combined ejector with zeotropic mixture R1270/R600a.,. Energy Conversion and Management, 220, 113078. https://doi.org/10.1016/j.enconman.2020.113078

Longo, G. A., Righetti, G., & Zilio, C. (2019). Heat-transfer assessment of the low GWP substitutes for traditional HFC refrigerants. International Journal of Heat and Mass Transfer, 139, 31-38. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.144.

Madyira, D. M., Marangwanda, G. T., Ekundayo, F. M., Babarinde, T. O., & Akinlabi, S. A. (2019). Investigation of Household Refrigerator System with Varied Capillary Tube Length. Journal of Physics: Conference Series, 1378.(4), 042056. https://doi.org/10.1088/1742-6596/1378/4/042056.

Mafi, M., Shomali, M., & Ajorloo, H. (2017). A feasibility study on substitution of environmentally friendly refrigerants in common refrigeration systems. Modares Mechanical Engineering, 16(12), 779–782. Retrieved from http://mme.modares.ac.ir/article-15-310-en.html.

Mastur, M., Supriyana, N., & Sutarno, S. (2020). Studi Eksperimen Pengaruh Beban dan Diameter Pipa Kapiler terhadap Coefficien of Performance (CoP) pada Mesin Pendingin. Iteks, 12(1), 51-59. Retrieved from https://www.ejournal.stt-wiworotomo.ac.id/index.php/iteks/article/view/289/352.

Mutaufiq, Sulistyo, H., Sumardi, K., Berman, E. T., & Wiyono, A. (2021). Performance Investigation of Cooling Machine Practice Props After Retrofitted by Natural Refrigerants. Jurnal Teknik: Media Pengembangan Ilmu Dan Aplikasi Teknik, 20(2), 136-145. https://doi.org/10.26874/jt.vol20no2.419.

Oyedepo, S. O. (2016). Effect of capillary tube length and refrigerant charge on the performance of domestic refrigerator with R12 and R600a.,. International Journal of Advanced Thermofluid Research, 2(1), 2–14.

Panato, V. H., Porto, M. P., & Bandarra, F, E. P. (2017). Experimental performance of an R-22-based refrigeration system for use with R-1270, R-438A, R-404A and R-134a. International Journal of Refrigeration, 83, 108–117. https://doi.org/10.1016/j.ijrefrig.2017.07.010.

Parashurama, S., Saleel, C. A., Govindegowda, M. S., & Khan, S. A. (2019). Hydrocarbons as Alternative Refrigerants in Domestic Refrigerators. International Journal of Innovative Technology and Exploring Engineering, 8, 496–501.

Pratama, E. Y., & Sukarmin. (2021). Pengembangan Media Interaktif Hace (Hydrocarbon) Dalam Mereduksi Miskonsepsi Peserta Didik Dengan Strategi Conceptual Change Text Pada Materi Hidrokarbon. Jurnal Teknologi Pendidikan (JTP), 14(1), 41. https://doi.org/10.24114/jtp.v14i1.22641.

Saengsikhiao, P., Taweekun, J., Maliwan, K., Sae-ung, S., & Theppaya, T. (2020). Development of Environmentally-Friendly and Energy Efficient Refrigerant for Medium Temperature Refrigeration Systems. Journal of Advanced Research in Materials Science, 71(1), 12–31. https://doi.org/10.37934/arms.71.1.1231.

Sánchez, D., Cabello, R., Llopis, R., Catalán-Gil, J., & Nebot-Andrés, L. (2019). Energy assessment and environmental impact analysis of an R134a/R744 cascade refrigeration plant upgraded with the low-GWP refrigerants R152a, R1234ze (E), propane (R290) and propylene (R1270). International Journal of Refrigeration, 104, 321–334. https://doi.org/10.1016/j.ijrefrig.2019.05.028.

Shaik, S. V., Shaik, S., & Gorantla, K. (2020). Investigation on thermodynamic performance analysis and environmental effects of various new refrigerants used in air conditioners. Environ. Sci. Pollut. Res., 27, 41415–41436. https://doi.org/10.1007/s11356-020-09478-6.

Shaik, S. V., & Babu, T. A. (2017). Theoretical performance investigation of vapour compression refrigeration system using HFC and HC refrigerant mixtures as alternatives to replace R22. Energy Procedia, 109, 235–242. https://doi.org/10.1016/j.egypro.2017.03.053.

Siddegowda, P., Sannappagowda, G. M., & Kempegowda, R. D. (2018). Development of alternative binary mixtures to replace HFC 134a in domestic refrigerator. Chemical Engineering Transactions, 71, 1399–1404. https://doi.org/10.3303/CET1871234

Singh, K. K., Kumar, R., & Gupta. (2021). A. Multi-objective Optimization of Thermodynamic and Economic Performances of Natural Refrigerants for Cascade Refrigeration. Arab. J. Sci. Eng, 46, 12235–12252. https://doi.org/10.1007/s13369-021-05924-w.

Sumardi, K., Berman, E. T., & Mutaufiq, M. (2021). The Performance of Vapor Compression Refrigeration System Using R-1270. Flywheel, 7(1), 21–27. https://doi.org/10.36055/fwl.v0i0.9998.

Sumardi, K., Naufal, D., Maulana, M. F., & Berman, E. T. (2021). Feasibility of R1270 as an Alternative Refrigerant to Replace R134a in Refrigerator. In 6th UPI International Conference on TVET 2020, 55–58. https://doi.org/10.2991/assehr.k.210203.086.

Vali, S. S., Setty, T. P., & Babu, A. (2018). Analytical computation of thermodynamic performance parameters of actual vapour compression refrigeration system with R22, R32, R134a, R152a, R290 and R1270. In MATEC Web of Conferences, 144, 04009. https://doi.org/10.1051/matecconf/201814404009.

Verma, R., & Chaudhary, S. (2017). Analysis of Constant Pressure and Constant Area Mixing Ejector Expansion Refrigeration System using R-1270 as Refrigerant. International Research Journal of Engineering and Technology, 4(6), 897–9011.

Wantha, C. (2019). Analysis of heat transfer characteristics of tube-in-tube internal heat exchangers for HFO-1234yf and HFC-134a refrigeration systems. Applied Thermal Engineering, 157, 113747. https://doi.org/10.1016/j.applthermaleng.2019.113747.

Wu, Z. J. (2015). The Experiment on System Performance Comparing Analysis and Displacement between R1270 and R22. In Applied Mechanics and Materials, 799, 770–773. Retrieved from https://doi.org/10.4028/www.scientific.net/AMM.799-800.770.

Yilmaz, B., Mancuhan, E., & Yilmaz, D. (2020). Theoretical Analysis of A Cascade Refrigeration System with Natural and Synthetic Working Fluid Pairs for Ultra Low Temperature Applications. Journal of Thermal Sciences and Technology, 40(1), 141-153.

Zhang, Y., He, Y., Wang, Y., Wu, X., Jia, M., & Gong, Y. (2020). Experimental investigation of the performance of an R1270/CO2 cascade refrigerant system. International Journal of Refrigeration, 114, 175–180. https://doi.org/10.1016/j.ijrefrig.2020.02.017.

Diterbitkan

2023-03-20

Cara Mengutip

Sumardi, K., & Ratnasari, A. . (2023). Refrigerator Performance With Natural Refrigerant (R1270) Double Pipe Heat Exchanger, Various Capillary Pipe Lengths. JST (Jurnal Sains Dan Teknologi), 12(1), 156–165. https://doi.org/10.23887/jstundiksha.v12i1.48287

Terbitan

Bagian

Articles