The GARCH-X(1,1) Model with Exponentially Transformed Exogenous Variables
DOI:
https://doi.org/10.23887/jstundiksha.v12i1.50714Kata Kunci:
ARWM, GARCH-X, Student-t, Transformasi eksponensial, VolatilitasAbstrak
This study applies the exponential transformation to the exogenous variables in the GARCH-X(1,1) model. The model assumes that the returns error is Normally and Student-t distributed. The data type used as an exogenous variable in the GARCH-X(1,1) model is Realized Volatility 10 minutes. Empirical analysis was carried out based on stock price index data FTSE100 and SP500 daily period from January 2000 to December 2021. Metropolis Adaptive Random Walk method was implemented in the Markov Chain Monte Carlo algorithm to estimate the model parameters. The High Posterior Density interval at the 95% level indicates the significance of the exponential transformation for the exogenous variable in both cases assuming a distribution for the returns error. Moreover, the Akaike Information Criterion (AIC) value indicates that the proposed model outperforms the basic GARCH-X(1,1) model, where the best fit model is given by the Student-t distributed model.
Referensi
Ariani, N. K., & Ujianti, P. R. (2021). Media Video Animasi untuk Meningkatkan Listening Skill Anak Usia Dini. Jurnal Pendidikan Anak Usia Dini Undiksha, 9(1), 43. https://doi.org/10.23887/paud.v9i1.35690.
Cavanaugh, J. E., & Neath, A. A. (2019). The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdisciplinary Reviews: Computational Statistics, 11(3), 1–11. https://doi.org/10.1002/wics.1460.
Ceylan, O. (2014). Time-varying volatility asymmetry: A conditioned HAR-RV(CJ) EGARCH-M model. Journal of Risk, 17(2), 21–49. https://doi.org/10.21314/JOR.2014.295.
Chaudhary, R., Bakhshi, P., & Gupta, H. (2020). Volatility in International Stock Markets: An Empirical Study during COVID-19. Journal of Risk and Financial Management, 13(9), 208. https://doi.org/10.3390/jrfm13090208.
Engle, R. (2002). New Frontiers for ARCH Models. Journal of Applied Econometrics, 17(5), 425–446. https://doi.org/10.1002/jae.683.
Engle, R. F., & Patton, A. J. (2001). What good is a volatility model? Quantitative Finance, 1(2), 237–245. https://doi.org/https://doi.org/10.1088/1469-7688/1/2/305.
Floros, C., Gkillas, K., Konstantatos, C., & Tsagkanos, A. (2020). Realized measures to explain volatility changes over time. Journal of Risk and Financial Management, 13(6), 125.
Gkillas, K., Gupta, R., & Pierdzioch, C. (2020). Forecasting realized gold volatility: Is there a role of geopolitical risks? Finance Research Letters, 35, 1–6. https://doi.org/10.1016/j.frl.2019.08.028.
Gulay, E., & Emec, H. (2019). The stock returns volatility based on the GARCH (1,1) model: The superiority of the truncated standard normal distribution in forecasting volatility. Iranian Economic Review, 23(1), 87–108. https://doi.org/10.22059/IER.2018.69100.
Han, H. (2015). Asymptotic properties of GARCH-X processes. Journal of Financial Econometrics, 13(1), 188–221. https://doi.org/10.1093/jjfinec/nbt023.
Hohler, J., & Lansink, A. O. (2021). Measuring the impact of COVID‐19 on stock prices and profits in the food supply chain. Agribusiness (New York, N.Y.), 37(1), 171–186. https://doi.org/10.1002/AGR.21678.
Kallner, A. (2018). Formulas. In A. Kallner (Ed.), Laboratory Statistics (Second, pp. 1–140). Elsevier. https://doi.org/10.1016/B978-0-12-814348-3.00001-0.
Li, R., & Nadarajah, S. (2020). A review of Student’s t distribution and its generalizations. Empirical Economics, 58(3), 1461–1490. https://doi.org/10.1007/s00181-018-1570-0.
McAlevey, L. G., & Stent, A. F. (2018). Kurtosis: a forgotten moment. International Journal of Mathematical Education in Science and Technology, 49(1), 120–130. https://doi.org/10.1080/0020739X.2017.1357848.
Mishra, A. K., Agrawal, S., & Patwa, J. A. (2022). Return and volatility spillover between India and leading Asian and global equity markets: An empirical analysis. Journal of Economics, Finance and Administrative Science, ahead-of-p(ahead-of-print). https://doi.org/10.1108/JEFAS-06-2021-0082.
Nugroho, D. B. (2018). Comparative Analysis of Three MCMC Methods for Estimating GARCH Models. In IOP Conference Series: Materials Science and Engineering (Vol. 403, p. 012061). IOP Publishing. https://doi.org/10.1088/1757-899X/403/1/012061.
Nugroho, D. B., Mahatma, T., & Pratomo, Y. (2021a). Applying the non-linear transformation families to the lagged-variance of EGARCH and GJR models. IAENG International Journal of Applied Mathematics, 51(4), 908–919.
Nugroho, D. B., Mahatma, T., & Pratomo, Y. (2021b). GARCH Models under Power Transformed Returns: Empirical Evidence from International Stock Indices. Austrian Journal of Statistics, 50(4), 1–18. https://doi.org/10.17713/ajs.v50i4.1075.
Nugroho, D. B., & Morimoto, T. (2014). Realized non-linear stochastic volatility models with asymmetric effects and generalized student’s t-distribution. Journal of The Japan Statistical Society, 44(1), 83–118. https://doi.org/10.14490/jjss.44.83.
Nugroho, D. B., & Morimoto, T. (2015). Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods. Computational Statistics, 30(2), 491–516. https://doi.org/10.1007/s00180-014-0546-6.
Nugroho, D. B., & Morimoto, T. (2016). Box–Cox Realized Asymmetric Stochastic Volatility Models with Generalized Student’s t-Error Distributions. Journal of Applied Statistics, 43(10), 1906–1927. https://doi.org/10.1080/02664763.2015.1125862.
Nugroho, D. B., Susanto, B., & Rosely, M. M. M. (2018). Penggunaan MS Excel untuk Estimasi Model GARCH(1,1). Jurnal Matematika Integratif, 14(2), 71–83. https://doi.org/10.24198/jmi.v14.n2.17680.71-82.
Perry, M. B. (2018). Prediction Intervals for the Original Response when Using Manly’s Exponential Transformations. Quality Engineering, 30(2), 195–211. https://doi.org/10.1080/08982112.2017.1357827.
Rahman, I., Gani, R. A., & Achmad, I. Z. (2020). Persepsi Siswa Pada Pembelajaran Pendidikan Jasmani Olahraga Dan Kesehatan Tingkat Sma. Jurnal Pendidikan Olahraga, 9(2), 144–154. https://doi.org/10.31571/jpo.v9i2.1898.
Sumair, M., Aized, T., Asad, S., Gardezi, R., Mahmood, M., Bhutta, A., … Rehman, S. (2021). Application of five continuous distributions and evaluation of wind potential at five stations using normal distribution. Energy Exploration & Exploitation, 39(6), 2214–2239. https://doi.org/10.1177/0144598720939373.
Sutrisno, B. (2020). The Determinants of Stock Price Volatility in Indonesia. Economics and Accounting Journal, 3(1), 73–79. https://doi.org/10.32493/eaj.v3i1.y2020.p73-79.
Virginia, E., Ginting, J., & Elfaki, F. A. M. (2018). Application of GARCH model to forecast data and volatility of share price of energy (Study on Adaro Energy Tbk, LQ45). International Journal of Energy Economics and Policy, 8(3), 131–140.
Wijaya, M. T. (2021). Pemodelan GARCH berdasarkan ukuran realized kernel dan pengestimasian model menggunakan Solver GRG Non-Linear dan metode ARWM. Universitas Kristen Satya Wacana.
Yeasin, M., Singh, K. N., Lama, A., & Paul, R. K. (2020). Modelling volatility influenced by exogenous factors using an improved GARCH-X model. Journal of the Indian Society of Agricultural Statistics, 74(3), 209–216.
Zhang, H., & Lan, Q. (2014). GARCH-type model with continuous and jump variation for stock volatility and its empirical study in China. Mathematical Problems in Engineering, 2014. https://doi.org/10.1155/2014/386721.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2022 Didit Nugroho, Obed Dimitrio, Faldy Tita

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)