Potential of Chlorella sp Microalgae to Remove Nutrients from Gray Water in the Sequencing Batch Biofilm Reactor (SBBR) System

Penulis

  • Melina Dwi Anggraini Universitas Riau Kampus Bina Widya, Pekanbaru, Indonesia
  • Shinta Elystia Universitas Riau Kampus Bina Widya, Pekanbaru, Indonesia
  • David Andrio Universitas Riau Kampus Bina Widya, Pekanbaru, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v12i1.51431

Kata Kunci:

Chlorella sp., SBBR

Abstrak

In general, domestic wastewater is divided into two, namely black water and gray water. Gray water waste is usually disposed of directly into drainage and water bodies without prior treatment before being discharged into water bodies, so that it can potentially cause water pollution. Grey water waste that is discharged directly into drainage or water bodies has the potential to cause pollution in water bodies. The high content of organic matter in grey water causes grey water waste to be treated first. One of the grey water treatment that can be done is by utilizing microorganisms. The microalgae Chlorella sp. can utilize organic matter as a source of nutrients for growth. This study aims to remove COD and ammonia parameters contained in grey water. SBBR processing is carried out with variations in the comparison of filling and reaction time, namely 30% : 70%, 40% : 60%, 50% : 50% and 60% : 40% and variation in the number of cycles of 4 cycles and 6 cycles. The best results for COD removal was 85% and ammonia removal was 77% in a reactor with comparison of filling and reaction time of 30% : 70% and the number of cycles is 4 cycles.

Referensi

Al-Rekabi, W. S., Samar, A. A., Ayman, H. H., & Husein, J. (2021). Effectiveness of sequencing batch biofilm reactor technology to treat domestic wastewater in basrah city. Journal of Ecological Engineering, 22(8), 234–242. https://doi.org/10.12911/22998993/138999.

Alomari, H. W., Ramasamy, V., Kiper, J. D., & Potvin, G. (2020). A User Interface (UI) and User eXperience (UX) evaluation framework for cyberlearning environments in computer science and software engineering education. Heliyon, 6(5), e03917. https://doi.org/10.1016/j.heliyon.2020.e03917.

Amalo, D., Gaol, M. L., & Beribe, H. D. (2019). Pengaruh konsentrasi air kelapa terhadap pertumbuhan mikroalga Chlorella Vulgaris. Jurnal Biotropikal Sains, 16(1), 28–39.

Bito, T., Okumura, E., Fujishima, M., & Watanabe, F. (2020). Potential of Chlorella as a Dietary Supplement to Promote Human Health. Nutrients, 12(9), 2524. https://doi.org/10.3390/nu12092524.

Cassidy, D. P., & Belia, E. (2005). Nitrogen and phosphorus removal from an abattoir wastewater in a sbr with aerobic granular sludge. Water Research, 39, 4817–4823. https://doi.org/10.1016/j.watres.2005.09.025.

Chiavola, A., Baciocchi, R., & Barducci, F. (2010). 3-Chlorophenol biodegradation in a sequencing batch reactor: Kinetic study and effect of the filling time. Water Air Soil Pollut, 212, 219–229. https://doi.org/10.1007/s11270-010-0334-z.

Elystia, S. (2020). Cultivation of pyrenoidosa as a raw material for the production of biofuels in plam oil mill effluent medium with the addition of urea anf triple super phosphate. Environmental Health Engineering and Management Journal, 7(1). https://doi.org/10.34172/EHEM.2020.01.

Elystia, S., Chairani, M., & Muria, S. R. (2021). Penyisihan nitrogen total dalam limbah cair hotel dengan sistem moving bed biofilm reactor menggunakan Chlorella sp. Jurnal Sains Dan Teknologi, 10(1), 16–27. https://doi.org/10.23887/jstundiksha.v10i1.24131.

Elystia, S., Muria, S. R., & Pertiwi, S. I. P. (2019). Pemanfaatan mikroalga Chlorella sp. untuk produksi lipid dalam media limbah cair hotel dengan variasi rasio c:n dan panjang gelombang cahaya. Jurnal Sains Dan Teknologi Lingkungan, 11(1), 25-43. https://doi.org/10.20885/jstl.vol11.iss1.art3.

Gunawan. (2012). Pengaruh perbedaan ph pada pertumbuhan mikroalga kelas Chlorophyta. BIOSCIENTIAE, 9(2), 62–65. https://doi.org/10.20527/b.v9i2.3875.

Hadiyanto, H., & Azim, M. (2012). Mikroalga sumber pangan dan energi masa depan. Edisi pertama. Semarang: UPT UNDIP Press. Retrieved from http://eprints.undip.ac.id/48607/1/Buku_Mikroalga___B5.pdf.

Hong, P., Xingqiang, W., Yilin, S., Chunbo, W., Cuicui, T., & Hailong, W. (2020). Bioaugmentation treatment of nitrogen rich wastewater with a denitrifier with biofilm formation and nitrogen removal capacities in a sequencing batch biofilm reactor. Journal Bioresourch Technology, 303, 1–9. https://doi.org/10.1016/j.biortech.2020.122905.

Indriani, V. M. (2020). Pengembangan Lembar Kerja Peserta Didik (LKPD) Berbasis Microsoft Power Point Pada Subtema Keberagaman Budaya Bangsaku Kelas IV Sekolah Dasar. Jpgsd, 8, 1044–1052.

Istirokhatun, T., Aulia, M., & Sudarno. (2017). Potensi Chlorella sp. untuk menyisihkan cod dan nitrat dalam limbah cair tahu. Jurnal Presipitasi, 14(2), 88–96. https://doi.org/10.14710/presipitasi.v14i2.88-96.

Jelizanur., Padil., & Muria, S. R. (2019). Kultivasi mikroalga menggunakan media af6 pada berbagai pH. Jom FTEKNIK, 6(2), 1–5. Retrieved from https://jnse.ejournal.unri.ac.id/index.php/JOMFTEKNIK/article/view/23519.

Jiang, J., Ma, L., Hao, L., Wu, D., & Wang, K. (2021). Comparative Study on Advanced Nitrogen Removal of Landfill Leachate Treated by SBR and SBBR. Water, 13(3240), 3240. https://doi.org/10.3390/w13223240.

Larasati, L. D., & Poedjiastoeti, S. (2016). Pengembangan Permainan Kartu Domino Kimia Sebagai Media Pembelajaran Pada Materi Unsur Bagi Siswa SMALB Tunarungu. Journal of Chemical Education, 5(1), 115–119. https://doi.org/10.26740/ujced.v5n1.p%25p.

Narayanan, M., Prabhakaran, M., Natarajan, D., Kandasamy, S., Raja, R., Carvalho, I. S., … Pugazhendhi, A. (2021). Phycoremediation potential of Chlorella sp. on the polluted Thirumanimutharu river water. Chemosphere, 277, 130246. https://doi.org/10.1016/j.chemosphere.2021.130246.

Natsir, M. F., Amaludin., Astisa, A. L., & Anzakiyah, D. F. (2021). Analisis kualitas BOD, COD dan TSS limbah cair domestik (grey water) pada rumah tangga di Kabupaten Maros 2021. Jurnal Nasional Ilmu Kesehatan (JNIK), 4(1), 20-25.

Ningtias, B. C., Setyo, S. M., Cindy, R. P., & Nusa, I. S. (2015). Pengolahan air limbah domestik dengan anoksik-aerobik moving bed biofilm reactor (studi kasus: penyisihan amonia dan karbon dalam air limbah domestik). Jurnal Air Indonesia, 8(2), 177–188. https://doi.org/10.29122/jai.v8i2.2377.

Nugroho, S. Y., Sumiyati, S., & Hadiwidodo, M. (2014). Penurunan kadar COD dan TSS pada limbah industri pencucian pakaian (laundry) dengan teknologi biofilm menggunakan media filter serat plastik dan tembikar dengan susunan random. Jurnal Teknik Lingkungan, 3(2).

Nurhayati, C., Hamzah, B., & Pambayun, R. (2014). Pengaruh pH, konsentrasi isolat chlorella vulgaris dan waktu pengamatan terhadap tingkat cemaran limbah cair Crumb Rubber. Jurnal Dinamika Penelitian Industri, 25(2), 97-106. https://doi.org/10.28959/jdpi.v25i2.515.

Prajapati, S. K., Malik, A., & Kumar, V. V. (2014). Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion. Applied Energy, 114, 790–797. https://doi.org/10.1016/j.apenergy.2013.08.021.

Rana, M. S., Bhushan, S., Sudhakar, D. R., & Prajapati, S. K. (2020). Effect of iron oxide nanoparticles on growth and biofuel potential of Chlorella spp. Algal Research, 49, 101942. https://doi.org/10.1016/j.algal.2020.101942.

Regista., Ambeng., Litaay, M., & Umar, M. R. (2017). Pengaruh pemberian vermikompos cair lumbricus rubellus hofmeister pada pertumbuhan Chlorella sp. Jurnal Biologi Makassar, 2(1), 1–8. https://doi.org/10.20956/bioma.v2i1.1346.

Restuhadi, F., Zalfiatri, Y., & Pringgondani, D. A. (2017). Pemanfaatan simbiosis mikroalga Chlorella sp. dan starbact untuk menurunkan kadar polutan limbah cair sagu. Jurnal Ilmu Lingkungan, 11(2), 140–153. https://doi.org/10.31258/sagu.v18i1.7863.

Rizal, W. A., Suryani, R., Wahono, S. K., Anwar, M., Amdani, R. Z., Suwanto, A., & Februanata, N. (2020). Pirolisis Limbah Biomassa Serbuk Gergaji Kayu Campuran: Parameter Proses dan Analisis Produk Asap Cair. Jurnal Riset Industri Balai Riset Dan Standarisasi Industri Samarinda, 14(2), 353–364. https://doi.org/https://doi.org/10.26578/jrti.v14i2.6606.

Said, N. I., & Muhammad, R. S. (2014). Penghilangan amoniak di dalam air limbah domestik dengan proses moving bed biofilm reactor (mbbr). Jurnal Air Indonesia, 7(1), 44–65. https://doi.org/10.29122/jai.v7i1.2399.

Soepartono. (2013). Sarana dan Prasarana Olahraga. Jakarta: DepartemenPendidikan Nasional. Jurnal Pendidikan Olahraga Dan Kesehatan, 1(1), : 144-149.

Tang, C. C., Zuo, W., Tian, Y., Wang, Z. W., Zhang, J., & He, Z. W. (2017). Enchanced nitrogen and phosphorus removal from domestic wastewater via algae-assisted sequencing batch biofilm reactor. Bioresource Technology, 250, 185-190. https://doi.org/10.1016/j.biortech.2017.11.028.

Utami, P. N., Yuniarti, M. S., & Haetami, K. (2012). Pertumbuhan Chlorella sp. yang dikultur pada perioditas cahaya yang berbeda. Jurnal Perikanan Dan Kelautan, 3(3), 237-244. Retrieved from http://jurnal.unpad.ac.id/jpk/article/view/1467/1465.

Zulfarina., I., S., & Putri, H. (2013). Potential utilization of algae chlorella pyrenoidosa for rubber waste management. Journal of Technology, 1(3).

Diterbitkan

2023-03-20

Cara Mengutip

Anggraini, M. D. ., Elystia, S., & Andrio, D. . (2023). Potential of Chlorella sp Microalgae to Remove Nutrients from Gray Water in the Sequencing Batch Biofilm Reactor (SBBR) System . JST (Jurnal Sains Dan Teknologi), 12(1), 229–241. https://doi.org/10.23887/jstundiksha.v12i1.51431

Terbitan

Bagian

Articles