Pabrikasi Bolus 3D berbahan Polylactic Acid untuk Terapi Radiasi pada Pasien Kanker Payudara
DOI:
https://doi.org/10.23887/jstundiksha.v12i2.52443Kata Kunci:
bolus 3D, CT-Simulator, , kanker payudara, polylactic acid, printer 3DAbstrak
Kanker payudara merupakan salah satu jenis kanker yang menempati urutan pertama sebagai penyumbang kematian akibat kanker di Indonesia. Pengobatan kanker payudara pada beberapa kasus belum mendapat dosis permukaan yang maksimal, sehingga dilakukan penelitian yang bertujuan untuk membuat bolus 3D setara dengan jaringan payudara manusia dan dapat meningkatkan dosis. Penelitian ini menggunakan Polylactic Acid (PLA) sebagai bahan utama pembuatan bolus. Bolus dicetak menggunakan printer 3D dengan variasi permukaan persentase material pengisi (infill) yaitu (20, 40, 60, 80, 100) %. Hasil pabrikasi bolus 3D dianalisis menggunakan metode analisis deskriptif berdasarkan hasil pengukuran nilai Relative Electron Density (RED) dan dosis serap menggunakan LINAC 15 MeV pada payudara manekin. Hasil penelitian menunjukkan bahwa bolus 3D berbahan PLA memberikan keseragaman dari segi ketebalan. Bolus dengan persentase infill 20% memiliki nilai RED yang paling mendekati RED payudara yaitu 0,99 dan mampu menyerap radiasi sebesar 1,98 Gy lebih optimal, jika dibandingkan dengan bolus komersial. Hal ini menunjukkan bahwa bolus 3D berbahan PLA dapat menjadi bolus alternatif saat pengobatan kanker psayudara menggunakan radioterapi dengan elektron.
Referensi
Aoyama, T., Uto, K., Shimizu, H., Ebara, M., Kitagawa, T., Tachibana, H. Kodaira, T. (2020). Physical and dosimetric characterization of thermoset shape memory bolus developed for radiotherapy. Medical Physics, 47(12), 6103–6112. https://doi.org/10.1002/mp.14516.
Aras, S., Tanzer, İ. O., & İkizceli, T. (2020). Dosimetric comparison of superflab and specially prepared bolus materials used in radiotherapy practice. European Journal of Breast Health, 16(3), 167–170. https://doi.org/10.5152/ejbh.2020.5041.
Biltekin, F., Yazici, G., & Ozyigit, G. (2021). Characterization of 3D-printed bolus produced at different printing parameters. Medical Dosimetry, 46(2), 157–163. https://doi.org/10.1016/j.meddos.2020.10.005.
Chiu, T., Tan, J., Brenner, M., Gu, X., Yang, M., Westover, K., … Zhao, B. (2018). Three-dimensional printer-aided casting of soft, custom silicone boluses (SCSBs) for head and neck radiation therapy. Practical Radiation Oncology, 8(3), e167–e174. https://doi.org/10.1016/j.prro.2017.11.001.
Contents, C. (2012). Chapter | 26 |, 431–466.
da Luz, F. A. C., da Costa Marinho, E., Nascimento, C. P., de Andrade Marques, L., Duarte, M. B. O., Delfino, P. F. R., … Silva, M. J. B. (2022). The effectiveness of radiotherapy in preventing disease recurrence after breast cancer surgery. Surgical Oncology, 41, 101709. https://doi.org/10.1016/j.suronc.2022.101709.
Diaz-Merchan, J. A., Martinez-Ovalle, S. A., & Vega-Carrillo, H. R. (2022). Characterization of a novel material to be used as bolus in radiotherapy with electrons. Applied Radiation and Isotopes, 183, 110154. https://doi.org/10.1016/j.apradiso.2022.110154.
Dyer, B. A., Campos, D. D., Hernandez, D. D., Wright, C. L., Perks, J. R., Lucero, S. A., … Rao, S. S. (2020). Characterization and clinical validation of patient-specific three-dimensional printed tissue-equivalent bolus for radiotherapy of head and neck malignancies involving skin. Physica Medica, 77, 138–145. https://doi.org/10.1016/j.ejmp.2020.08.010.
Fan, J., Xu, G., Yang, D., Chen, W., Zhang, D., Wang, M., … Li, X. (2021). Fabrication and Application of 3D Printed Bolus for Optimizing Radiotherapy in Superficial Tumor. Clinics of Surgery, 06(12). https://doi.org/10.47829/cos.2021.61201.
Gomez, G., Baeza, M., Mateos, J. C., Rivas, J. A., Simon, F. J. L., Ortega, D. M., … Guerra, J. L. L. (2021). A three-dimensional printed customized bolus: adapting to the shape of the outer ear. Reports of Practical Oncology and Radiotherapy, 26(2), 211–217. https://doi.org/10.5603/RPOR.a2021.0030.
Hariyanto, A. P., Fachrina, U. M., Levina, A., Endarko, E., dan Bambang, H. S. (2020). Fabrication and characterization of bolus material using propylene glycol for radiation therapy. Iranian Journal of Medical Physics, 70(3), 161–169.
Khan, Y., Villarreal-Barajas, J. E., Udowicz, M., Sinha, R., Muhammad, W., Abbasi, A. N., & Hussain, A. (2013). Clinical and dosimetric implications of air gaps between bolus and skin surface during radiation therapy. Journal of Cancer Therapy, 4(7), 1251. https://doi.org/10.4236/jct.2013.47147.
Koutsouvelis, N., Rouzaud, M., Dubouloz, A., Nouet, P., Jaccard, M., Garibotto, V., … Dipasquale, G. (2020). 3D printing for dosimetric optimization and quality assurance in small animal irradiations using megavoltage X-rays. Zeitschrift Für Medizinische Physik, 30(3), 227–235. https://doi.org/10.1016/j.zemedi.2020.03.004.
Lobo D., Banerjee, S., Srinivas, C., Ravichandran, R., Putha, S.K., Saxena, P.P., Reddy, S., dan Sunny, J. (2021). Influence of Air Gap Under Bolus in The Dosimetry of a Clinical 6MV Photon Beam. Journal of Medical Physic, 45, 175–181. https://doi.org/10.4103/jmp.JMP_53_20.
Lynch, N., Monajemi, T., & Robar, J. L. (2020). Characterization of novel 3D printed plastic scintillation dosimeters. Biomedical Physics & Engineering Express, 6(5), 55014. https://doi.org/10.1088/2057-1976/aba880.
Madamesila, J., McGeachy, P., Barajas, J. E. V., & Khan, R. (2016). Characterizing 3D printing in the fabrication of variable density phantoms for quality assurance of radiotherapy. Physica Medica, 32(1), 242–247. https://doi.org/10.1016/j.ejmp.2015.09.013.
Makris, D. N., Pappas, E. P., Zoros, E., Papanikolaou, N., Saenz, D. L., Kalaitzakis, G., … Pappas, E. (2019). Characterization of a novel 3D printed patient specific phantom for quality assurance in cranial stereotactic radiosurgery applications. Physics in Medicine & Biology, 64(10), 105009. https://doi.org/10.1088/1361-6560/ab1758.
McCallum, S., Maresse, S., & Fearns, P. (2021). Evaluating 3D-printed Bolus Compared to Conventional Bolus Types Used in External Beam Radiation Therapy. Current Medical Imaging, 17(7), 820–831. https://doi.org/10.2174/1573405617666210202114336.
Meyer, T., Quirk, S., D’Souza, M., Spencer, D., & Roumeliotis, M. (2018). A framework for clinical commissioning of 3D‐printed patient support or immobilization devices in photon radiotherapy. Journal of Applied Clinical Medical Physics, 19(5), 499–505. https://doi.org/10.1002/acm2.12408.
Munoz, L., Rijken, J., Hunter, M., & Nyathi, T. (2020). Investigation of elastomeric materials for bolus using stereolithography printing technology in radiotherapy. Biomedical Physics & Engineering Express, 6(4), 45014. https://doi.org/10.1088/2057-1976/ab9425.
Park, S.-Y., Choi, C. H., Park, J. M., Chun, M., Han, J. H., & Kim, J. (2021). A patient-specific polylactic acid bolus made by a 3D printer for breast cancer radiation therapy. PloS One, 11(12), e0168063.
Podgorsak, E. B. (2019). Radiation Oncology Physics: A Handbook for Teachers and Students,. Vienna: IAEA.
Ricotti, R., Ciardo, D., Pansini, F., Bazani, A., Comi, S., Spoto, R., … Orecchia, R. (2017). Dosimetric characterization of 3D printed bolus at different infill percentage for external photon beam radiotherapy. Physica Medica, 39, 25–32. https://doi.org/10.1016/j.ejmp.2017.06.004.
Robar, J. L., Moran, K., Allan, J., Clancey, J., Joseph, T., Chytyk-Praznik, K., … Rutledge, R. (2018). Intrapatient study comparing 3D printed bolus versus standard vinyl gel sheet bolus for postmastectomy chest wall radiation therapy. Practical Radiation Oncology, 8(4), 221–229. https://doi.org/10.1016/j.prro.2017.12.008.
Rumgay, H., Shield, K., Charvat, H., Ferrari, P., Sornpaisarn, B., Obot, I., … Soerjomataram, I. (2021). Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study. The Lancet Oncology, 22(8), 1071–1080. https://doi.org/10.1016/S1470-2045(21)00279-5.
Susworo, R. (2018). Radioterapi. Jakarta: UI Press.
Sutanto, H., Eko, H., Gede, J. W., Santi., A. Y., & Suparman Suppa Astri, S. S. (2018). Bolus Berbahan Silicone dan Natural Rubber. Semarang: Undip Press.
Tino, R., Yeo, A., Leary, M., Brandt, M., & Kron, T. (2019). A systematic review on 3D-printed imaging and dosimetry phantoms in radiation therapy. Technology in Cancer Research & Treatment, 18, 1533033819870208. https://doi.org/10.1177/1533033819870208.
Wang, K. M., Rickards, A. J., Bingham, T., Tward, J. D., & Price, R. G. (2022). Technical note: Evaluation of a silicone-based custom bolus for radiation therapy of a superficial pelvic tumor. Journal of Applied Clinical Medical Physics, (January 2021), 1–8. https://doi.org/10.1002/acm2.13538.
Zou, W., Fisher, T., Zhang, M., Kim, L., Chen, T., Narra, V., … Yin, L. (2015). Potential of 3D printing technologies for fabrication of electron bolus and proton compensators. Journal of Applied Clinical Medical Physics, 16(3), 90–98. https://doi.org/10.1120/jacmp.v16i3.4959.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2023 Sri Oktamuliani
Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)