Sistem Manajemen Termal Baterai LiFePO4 Menggunakan Pelat Pendingin Mini Channel Untuk Aplikasi Kendaraan Listrik
DOI:
https://doi.org/10.23887/jstundiksha.v12i3.59241Kata Kunci:
Mini Channel, LiFePO4, Pelat Pendingin Cair, Kendaraan Listrik, CFDAbstrak
Fungsi baterai Lithium ion adalah memberikan tenaga listrik yang cukup pada kendaraan listrik. Namun, baterai tersebut rentan terhadap suhu tinggi karena dapat menyebabkan thermal run away sehingga dibutuhkan Baterai Thermal Management System (BTMS). Penelitian ini bertujuan untuk menganalisis sistem manajemen termal baterai (BMTS) dengan pendinginan aktif pada baterai LiFePO4 untuk menurunkan termperatur kerja baterai dalam kondisi operasi yang optimal. Sistem BTMS dianalisis dengan pendekatan pemodelan tiga dimensi menggunakan Computational Fluid Dynamic (CFD) untuk karakterisasi termal dengan software ANSYS Fluent 2023 R1. Model turbulensi standar K- digunakan pada sel baterai tunggal pada berbagai laju pelepasan untuk mengetahui kenaikan suhu baterai. Analisis juga dilakukan pada modul baterai dengan atau tanpa mini channel. Suhu modul baterai dalam kondisi pelepasan 5C tanpa sistem pendingin mencapai 354.63 K, kondisi ini dapat menyebabkan thermal runaway. Namun pengaruh sistem pendingin mini channel pada laju aliran massa 1x10-1 kg/s mampu mengurangi suhu maksimum modul baterai menjadi 12.14% pada debit 5C. Hasil penelitian ini dapat mengendalikan suhu pada baterai dalam kondisi operasi baterai yang optimal. Implikasinya sistem BTMS dengan mini channel ini dapat di terapkan pada kendaraan listrik dengan kondisi penggunaan daya yang tinggi.
Referensi
Akbarzadeh, M., Jaguemont, J., Kalogiannis, T., Karimi, D., He, J., Jin, L., Xie, P., Van Mierlo, J., & Berecibar, M. (2021). A novel liquid cooling plate concept for thermal management of lithium-ion batteries in electric vehicles. Energy Conversion and Management, 231, 113862. https://doi.org/10.1016/j.enconman.2021.113862.
Behi, H., Ghanbarpour, M., & Behi, M. (2017). Investigation of PCM-assisted heat pipe for electronic cooling. Applied Thermal Engineering, 127, 1132–1142. https://doi.org/10.1016/j.applthermaleng.2017.08.109.
Behi, H., Karimi, D., Behi, M., Jaguemont, J., Ghanbarpour, M., Behnia, M., Berecibar, M., & Van Mierlo, J. (2020). Thermal management analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles. Journal of Energy Storage, 32, 101893. https://doi.org/10.1016/j.est.2020.101893.
Chung, Y., & Kim, M. S. (2019). Thermal analysis and pack level design of battery thermal management system with liquid cooling for electric vehicles. Energy Conversion and Management, 196, 105–116. https://doi.org/10.1016/j.enconman.2019.05.083.
Fathabadi, H. (2014). High thermal performance lithium-ion battery pack including hybrid active-passive thermal management system for using in hybrid/electric vehicles. Energy, 70, 529–538. https://doi.org/10.1016/j.energy.2014.04.046.
Feng, L., Zhou, S., Li, Y., Wang, Y., Zhao, Q., Luo, C., Wang, G., & Yan, K. (2018). Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling. Journal of Energy Storage, 16, 84–92. https://doi.org/10.1016/j.est.2018.01.001.
Huang, Y., Mei, P., Lu, Y., Huang, R., Yu, X., Chen, Z., & Roskilly, A. P. (2019). A Novel Approach For Lithium-Ion Battery Thermal Management With Streamline Shape Mini Channel Cooling Plates. Applied Thermal Engineering, 157, 113623. https://doi.org/10.1016/j.applthermaleng.2019.04.033.
Jin, L., Tian, J., Gao, S., Xie, P., Akbarzadeh, M., Kalogiannis, T., Berecibar, M., Lan, Y., Hu, D., Ding, Y., & Qiao, G. (2021). A novel hybrid thermal management approach towards high-voltage battery pack for electric vehicles. Energy Conversion and Management, 247, 114676. https://doi.org/10.1016/j.enconman.2021.114676.
Kong, W., Zhu, K., Lu, X., Jin, J., & Ni, M. (2021). Enhancement of lithium-ion battery thermal management with the divergent-shaped channel cold plate. Journal of Energy Storage, 42, 103027. https://doi.org/10.1016/j.est.2021.103027.
Lai, Y., Wu, W., Chen, K., Wang, S., & Xin, C. (2019). A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack. International Journal of Heat and Mass Transfer, 144, 118581. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118581.
Li, Y., Guo, H., Qi, F., Guo, Z., Li, M., & Bertling Tjernberg, L. (2021). Investigation on liquid cold plate thermal management system with heat pipes for LiFePO4 battery pack in electric vehicles. Applied Thermal Engineering, 185, 116382. https://doi.org/10.1016/j.applthermaleng.2020.116382.
Liu, H. ling, Shi, H. bo, Shen, H., & Xie, G. (2019). The performance management of a Li-ion battery by using tree-like mini-channel heat sinks: Experimental and numerical optimization. Energy, 189, 116150. https://doi.org/10.1016/j.energy.2019.116150.
Liu, R., Chen, J., Xun, J., Jiao, K., & Du, Q. (2014). Numerical investigation of thermal behaviors in lithium-ion battery stack discharge. Applied Energy, 132, 288–297. https://doi.org/10.1016/j.apenergy.2014.07.024.
Lu, M., Zhang, X., Ji, J., Xu, X., & Zhang, Y. (2020). Research progress on power battery cooling technology for electric vehicles. Journal of Energy Storage, 27, 101155. https://doi.org/10.1016/j.est.2019.101155.
Maulana, I., Aripin, & Chobir, A. (2019). Studi Elektrokimia Baterai Aluminium-. Journal of Energy and Electrical Engineering (JEEE), 01(01), 25–28. https://doi.org/10.37058/jeee.v1i1.1193.
Monika, K., Chakraborty, C., Roy, S., Dinda, S., Singh, S. A., & Datta, S. P. (2021). An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles. Journal of Energy Storage, 35, 102301. https://doi.org/10.1016/j.est.2021.102301.
Park, H. (2013). A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. Journal of Power Sources, 239, 30–36. https://doi.org/10.1016/j.jpowsour.2013.03.102.
Putra, N., Sandi, A. F., Ariantara, B., Abdullah, N., & Indra Mahlia, T. M. (2020). Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles. Case Studies in Thermal Engineering, 21, 100655. https://doi.org/10.1016/j.csite.2020.100655.
Saw, L. H., Poon, H. M., Thiam, H. S., Cai, Z., Chong, W. T., Pambudi, N. A., & King, Y. J. (2018). Novel thermal management system using mist cooling for lithium-ion battery packs. Applied Energy, 223, 146–158. https://doi.org/10.1016/j.apenergy.2018.04.042.
Saw, L. H., Ye, Y., Tay, A. A. O., Chong, W. T., Kuan, S. H., & Yew, M. C. (2016). Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Applied Energy, 177, 783–792. https://doi.org/10.1016/j.apenergy.2016.05.122.
Sun, Z., Fan, R., Yan, F., Zhou, T., & Zheng, N. (2019). Thermal management of the lithium-ion battery by the composite PCM-Fin structures. International Journal of Heat and Mass Transfer, 145, 118739. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118739.
Van-Thanh, H. (2020). Transient Thermal Analysis of a Li-IonVan-Thanh, Ho; Khoungsik, Chang; Sang Wook, Lee; Sung Han, Kim. 2020. “Transient Thermal Analysis of a Li-Ion Battery.” Battery. Energies, 13, 2387. https://doi.org/10.3390/en13092387.
Verma, A., Saikia, T., Saikia, P., Rakshit, D., & Ugalde-Loo, C. E. (2023). Thermal performance analysis and experimental verification of lithium-ion batteries for electric vehicle applications through optimized inclined mini-channels. Applied Energy, 335, 120743. https://doi.org/10.1016/j.apenergy.2023.120743.
Wang, J., Liu, X., Liu, F., Liu, Y., Wang, F., & Yang, N. (2021). Numerical optimization of the cooling effect of the bionic spider-web channel cold plate on a pouch lithium-ion battery. Case Studies in Thermal Engineering, 26, 101124. https://doi.org/10.1016/j.csite.2021.101124.
Wang, Q., Jiang, B., Xue, Q. F., Sun, H. L., Li, B., Zou, H. M., & Yan, Y. Y. (2014). Experimental investigation on EV battery cooling and heating by heat pipes. Applied Thermal Engineering, 88, 54–60. https://doi.org/10.1016/j.applthermaleng.2014.09.083.
Wang, Qian, Jiang, B., Li, B., & Yan, Y. (2016). A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renewable and Sustainable Energy Reviews, 64, 106–128. https://doi.org/10.1016/j.rser.2016.05.033.
Wang, Qingsong, Ping, P., Zhao, X., Chu, G., Sun, J., & Chen, C. (2012). Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources, 208, 210–224. https://doi.org/10.1016/j.jpowsour.2012.02.038.
Wibowo, N. (2016). Upaya Peningkatan Keaktifan Siswa Melalui Pembelajaran Berdasarkan Gaya Belajar Di Smk Negeri 1 Saptosari. Elinvo (Electronics, Informatics, and Vocational Education), 1(2), 128–139. https://doi.org/10.21831/elinvo.v1i2.10621.
Wu, C., Wang, Z., Bao, Y., Zhao, J., & Rao, Z. (2021). Investigation on the performance enhancement of baffled cold plate based battery thermal management system. Journal of Energy Storage, 41, 102882. https://doi.org/10.1016/j.est.2021.102882.
Wu, W., Yang, X., Zhang, G., Chen, K., & Wang, S. (2017). Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system. Energy Conversion and Management, 138, 486–492. https://doi.org/10.1016/j.enconman.2017.02.022.
Xu, X., Li, W., Xu, B., & Qin, J. (2019). Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions. Applied Energy, 250, 404–412. https://doi.org/10.1016/j.apenergy.2019.04.180.
Yang, W., Zhou, F., Zhou, H., Wang, Q., & Kong, J. (2020). Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling. Applied Thermal Engineering, 175, 115331. https://doi.org/10.1016/j.applthermaleng.2020.115331.
Zhou, H., Zhou, F., Zhang, Q., Wang, Q., & Song, Z. (2019). Thermal management of cylindrical lithium-ion battery based on a liquid cooling method with half-helical duct. Applied Thermal Engineering, 162, 114257. https://doi.org/10.1016/j.applthermaleng.2019.114257.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2023 Angga Ainul Yaqien, Mohamad Yamin, Cokorda Prapti Mahandari
Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)