Biodegradasi Bioplastik Berbahan Dasar Pati Daluga (Cyrtosperma merkusii) dengan Cellulose Nano Crystal sebagai Agen Reinforcement sebagai Dasar Pengembangan Food Packaging

Penulis

  • Nobel Timbuleng Universitas Negeri Manado, Manado, Indonesia
  • Orbanus Naharia Universitas Negeri Manado, Manado, Indonesia
  • Sukmarayu Piter Gedoan Universitas Negeri Manado, Manado, Indonesia
  • Yermia Semuel Mokosuli Universitas Negeri Manado, Manado, Indonesia
  • Dino Rahardiyan Universitas Katolik De La Salle Manado, Manado, Indonesia https://orcid.org/0000-0003-2854-3747
  • Emma Mauren Moko Universitas Negeri Manado, Manado, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v12i3.67917

Kata Kunci:

biodegradasi, bioplastik, cellulose nano crystal, daluga, reinforcement

Abstrak

Daluga (Cyrtosperma merkusii) adalah tanaman pesisir memiliki karakter sebagai tanaman paludikultur. Tanaman ini merupakan tanaman yang kurang dimanfaatkan sehingga cocok sebagai bahan utama bioplastik yang mana tidak berkompetisi dengan bahan pati pangan lainnya. Penelitian ini merupakan penelitian deskriptif kualitatif  memberikan gambaran laju biodegradabilitas dalam tanah dan dalam consortium bakteri EM4 dari bioplastik daluga dengan plasticizer gliserol,  subjek penelitian adalah bioplastik dari pati umbi daluga dengan gliserol sebagai plasticizer dibandingkan dengan bioplastik pati umbi daluga yang diperkuat strukturnya dengan selulosa nano kristal (CNC). Proses pengumpulan datanya dilakukan selama masa inkubasi tujuh hari, terhadap densitas, laju biodegradibilitas dalam tanah dan dalam larutan EM4, daya serap air, porositas, dan laju transmisi uap air, dimana dalam kurun waktu tersebut laju biodegradabilitasnya meningkat terutama bagi bioplastik dalam media tanah demikian juga bioplastik dalam EM4. Penambahan filler CNC memberikan nilai reinforcement bagi struktur bioplastik sehingga memperkuat struktur agar dapat dipergunakan sebagai kemasan bahan pangan dengan kadar air tinggi.. Laju biodegradibilitas bioplastik daluga yang diperkuat oleh CNC lebih lambat baik yang  dalam tanah maupun yang ada dalam larutan EM4. Keterbaruan dari penelitian ini adalah pengujian biodegradibilitas dari bioplastik yang menggunakan sumber pati underutilized berbasis kearifan lokal yang diperkuat (reinforced) strukturnya dengan CNC asal limbah pengolahan pati daluga.

Referensi

Abdullah, A. H. D., Fikriyyah, A. K., & Dewantoro, R. (2019). Fabrication and characterization of starch based bioplastics with palm oil addition. Jurnal Sains Materi Indonesia, 20(3), 126–131. https://doi.org/10.17146/jsmi.2019.20.3.4846.

Agustin, Y. E., & Padmawijaya, K. S. (2016). Sintesis bioplastik dari kitosan-pati kulit pisang kepok dengan penambahan zat aditif. Jurnal Teknik Kimia, 10(2), 43–51. http://ejournal.upnjatim.ac.id/index.php/tekkim/article/view/537/423.

Alcivar-Gavilanes, M. G., Carrillo-Anchundia, K. L., & Rieral, M. A. (2022). Development of a bioplastic from banana peel. Ingeniería e Investigación, 42(3), 1–8. https://doi.org/10.15446/ing.investig.92768.

Alves, J. S., Dos Reis, K. C., Menezes, E. G. T., Pereira, F. V., & Pereira, J. (2015). Effect of cellulose nanocrystals and gelatin in corn starch plasticized films. Carbohydrate Polymers, 115, 215–222. https://doi.org/10.1016/j.carbpol.2014.08.057.

Bank, M. S., Swarzenski, P. W., Duarte, C. M., Rillig, M. C., Koelmans, A. A., Metian, M., & Ok, Y. S. (2021). Global plastic pollution observation system to aid policy. Environmental Science & Technology, 55(12), 7770–7775. https://doi.org/10.1021/acs.est.1c00818.

Chowdhury, M., Hossain, N., Noman, T. I., Hasan, A., Shafiul, A., & Abul, K. M. (2022). Biodegradable, physical and microbial analysis of tamarind seed starch infused eco-friendly bioplastics by different percentage of Arjuna powder. Results in Engineering, 13. https://doi.org/10.1016/j.rineng.2022.100387.

Christwardana, M., Ismojo, I., & Marsudi, S. (2022). Biodegradation Kinetic Study of Cassava & Tannia Starch-Based Bioplastics as Green Material in Various Media. Molekul, 17(1), 19–29. https://doi.org/10.20884/1.jm.2022.17.1.5591.

Darni, Y., Dewi, F. Y., & Lismeri, L. (2017). Modification of Sorghum Starch-Cellulose Bioplastic with Sorghum Stalks Filler. Jurnal Rekayasa Kimia & Lingkungan, 12(1), 22–30. https://doi.org/10.23955/rkl.v12i1.5410.

Das, S., & Kalyani, M. I. (2023). From trash to treasure: review on upcycling of fruit and vegetable wastes into starch based bioplastics. Preparative Biochemistry & Biotechnology, 53(7), 713–727. https://doi.org/10.1080/10826068.2022.2158470.

Dea, F. I., Purbowati, I. S. M., & Wibowo, C. (2022). Karakteristik Edible Film yang Dihasilkan Dengan Bahan Dasar Pektin Kulit Buah Kopi Robusta dan Glukomanan. Agrointek: Jurnal Teknologi Industri Pertanian, 16(3), 439–449. https://doi.org/10.21107/agrointek.v16i3.11480.

Emadian, S. M., Onay, T. T., & Demirel, B. (2017). Biodegradation of bioplastics in natural environments. Waste Management, 59, 526–536. https://doi.org/10.1016/j.wasman.2016.10.006.

Espitia, P. J. P., Du, W. X., de Jesús Avena-Bustillos, R., Soares, N. D. F. F., & McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties-A review. Food Hydrocolloids, 35, 287–296. https://doi.org/10.1016/j.foodhyd.2013.06.005.

Hamzah, F. H., Sitompul, F. F., Ayu, D. F., & Pramana, A. (2021). Effect of the Glycerol Addition on the Physical Characteristics of Biodegradable Plastic Made from Oil Palm Empty Fruit Bunch. Industria: Jurnal Teknologi Dan Manajemen Agroindustri, 10(3), 239–248. https://doi.org/10.21776/ub.industria.2021.010.03.5.

Hayati, N., & Lazulva, L. (2018). Preparing of Cornstarch (Zea mays) Bioplastic Using ZnO Metal. Indonesian Journal of Chemical Science and Technology (IJCST), 1(1), 23–30. https://doi.org/10.24114/ijcst.v1i1.10595.

Khazaei, N., Esmaiili, M., Djomeh, Z. E., Ghasemlou, M., & Jouki, M. (2014). Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydrate Polymers, 102, 199–206. https://doi.org/10.1016/j.carbpol.2013.10.062.

Kusumawati, D. H., & Putri, W. D. R. (2013). Karakteristik fisik dan kimia edible film pati jagung yang diinkorporasi dengan perasan temu hitam. Jurnal Pangan Dan Agroindustri, 1(1), 90–100. https://jpa.ub.ac.id/index.php/jpa/article/view/9.

Lazuardi, G. P., & Cahyaningrum, S. E. (2013). Pembuatan dan Karakterisasi Bioplastik Berbahan Dasar Kitosan dan Pati Singkong dengan Plasticizer Gliserol (Preparation and Characterization Based Bioplastic Chitosan and Cassava Starch With Glycerol Plazticizer). UNESA Journal of Chemistry, 2(3), 161–166. https://doi.org/10.26740/ujc.v2n3.p%25p.

Luchese, C. L., Rodrigues, R. B., & Tessaro, I. C. (2021). Cassava starch-processing residue utilization for packaging development. International Journal of Biological Macromolecules, 183, 2238–2247. https://doi.org/10.1016/j.ijbiomac.2021.06.029.

Manrich, A., Moreira, F. K., Otoni, C. G., Lorevice, M. V., Martins, M. A., & Mattoso, L. H. (2017). Hydrophobic edible films made up of tomato cutin and pectin. Carbohydrate Polymers, 164, 83–91. https://doi.org/10.1016/j.carbpol.2017.01.075.

Mohammadi Nafchi, A., Olfat, A., Bagheri, M., Nouri, L., Karim, A. A., & Ariffin, F. (2017). Preparation and characterization of a novel edible film based on Alyssum homolocarpum seed gum. Journal of Food Science and Technology, 54(6), 1703–1710. https://doi.org/10.1007/s13197-017-2602-z.

Moko, E. M., Rahardiyan, D., Rawung, L. D., Sompotan, A. F., & Pontoan, K. A. (2023). Low-Cost Alkaline Pretreatments and Ultrafine Grinding in Nanocellulose Crystal Extraction from Giant Swamp Taro (Crytosperma merkusii) Processing Waste. Egyptian Journal of Chemistry, 66(13), 89–98. https://doi.org/10.21608/EJCHEM.2023.169552.7104.

Moro, T. M., Ascheri, J. L., Ortiz, J. A., Carvalho, C. W., & Meléndez-Arévalo, A. (2017). Bioplastics of native starches reinforced with passion fruit peel. Food and Bioprocess Technology, 10, 1798–1808. https://doi.org/10.1007/s11947-017-1944-x.

Mousavi, S. N., Nazarnezhad, N., Asadpour, G., Ramamoorthy, S. K., & Zamani, A. (2021). Ultrafine friction grinding of lignin for development of starch biocomposite films. Polymers, 13(12). https://doi.org/10.3390/polym13122024.

Nasution, H., Harahap, H., Al Fath, M. T., & Afandy, Y. (2018). Physical properties of sago starch biocomposite filled with Nanocrystalline Cellulose (NCC) from rattan biomass: The effect of filler loading and co-plasticizer addition. IOP Conference Series: Materials Science and Engineering, 309(1). https://doi.org/10.1088/1757-899X/309/1/012033.

Nisa, M., Nuraisyah, A., & Yusuf, N. A. (2016). Formulasi Patch Kosmetik Lendir Bekicot (Achatina fulica) Dengan Polimer Kitosan Dan Berbagai Variasi Amilum. Jurnal Ilmiah Manuntung, 2(2), 233–238. https://doi.org/10.51352/jim.v2i2.71.

Nugrahanto, A. D., Kurniawati, A., & Erwanto, Y. (2021). Karakteristik fisis bioplastik yang dibuat dari kombinasi pati tapioka dan kasein susu apkir. Majalah Kulit, Karet, Dan Plastik, 37(2), 103–114. https://doi.org/10.20543/mkkp.v37i2.7422.

Nugroho, A. A., Basito, B., & Anandito, R. B. K. (2013). Kajian pembuatan edible film tapioka dengan pengaruh penambahan pektin beberapa jenis kulit pisang terhadap karakteristik fisik dan mekanik. Jurnal Teknosains Pangan, 2(1), 73–79. https://jurnal.uns.ac.id/teknosains-pangan/article/download/4276/3692.

Nur, R. A., Nazir, N., & Taib, G. (2020). Karakteristik Bioplastik dari Pati Biji Durian dan Pati Singkong yang Menggunakan Bahan Pengisi MCC (Microcrystalline Cellulose) dari Kulit Kakao. Gema Agro, 25(1), 1–10. https://doi.org/10.22225/ga.25.1.1713.01-10.

Nurulhasni, D. (2023). Home Made BIOPLASLITS dengan Analisis Pengaruh Rasio Gliserol dan Selulosa terhadap Kekuatan Tarik, Elongation, dan Ketebalan. JST (Jurnal Sains Dan Teknologi), 12(1), 56–64. https://doi.org/10.23887/jstundiksha.v12i1.51464.

Onovo, H. O., Akano, T. T., Onyegbule, D. U., Towolawi, E. T., & Ajala, T. S. (2022). A Study of Biodegradation of Hybrid Bioplastic Films Blend from Manihot and Triticum Biopolymer. European Journal of Engineering and Technology Research, 7(3), 30–38. https://doi.org/10.24018/ejeng.2022.7.3.2772.

Pongputthipat, W., Ruksakulpiwat, Y., & Chumsamrong, P. (2023). Development of biodegradable biocomposite films from poly (lactic acid), natural rubber and rice straw. Polymer Bulletin, 80(9), 10289–10307. https://doi.org/10.1007/s00289-022-04560-0.

Prasteen, P., Thushyanthy, Y., Mikunthan, T., & Prabhaharan, M. (2018). Bio-plastics–An alternative to petroleum based plastics. International Journal of Research Studies in Agricultural Sciences, 4(1), 1–7. https://doi.org/10.20431/2454-6224.0401001.

Purnavita, S., Subandriyo, D. Y., & Anggraeni, A. (2020). Penambahan gliserol terhadap karakteristik bioplastik dari komposit pati aren dan glukomanan. Metana, 16(1), 19–25. https://doi.org/10.14710/metana.v16i1.29977.

Rahardiyan, D., Moko, E. M., Shun, T. J., & Keong, L. C. (2023). Thermoplastic starch (TPS) bioplastic, the green solution for single-use petroleum plastic food packaging – A review. Enzyme and Microbial Technology, 168. https://doi.org/10.1016/j.enzmictec.2023.110260.

Samalens, F., Thomas, M., Claverie, M., Castejon, N., Zhang, Y., Pigot, T., & Fernandes, S. C. (2022). Progresses and future prospects in biodegradation of marine biopolymers and emerging biopolymer-based materials for sustainable marine ecosystems. Green Chemistry, 24(5), 1762–1779. https://doi.org/10.1039/D1GC04327G.

Schmaltz, E., Melvin, E. C., Diana, Z., Gunady, E. F., Rittschof, D., Somarelli, J. A., & Dunphy-Daly, M. M. (2020). Plastic pollution solutions: emerging technologies to prevent and collect marine plastic pollution. Environment International, 144, 1–17. https://doi.org/10.1016/j.envint.2020.106067.

Sharma, D., Dhanjal, D. S., & Mittal, B. (2017). Development of edible biofilm containing cinnamon to control food-borne pathogen. Journal of Applied Pharmaceutical Science, 7(1), 160–164. https://doi.org/10.7324/JAPS.2017.70122.

Sugiharto, A., Syarifa, A., Handayani, N., & Mahendra, R. (2021). Effect of Chitosan, Clay, and CMC on Physicochemical Properties of Bioplastic from Banana Corm with Glycerol. Jurnal Bahan Alam Terbarukan, 10(1), 31–35. https://doi.org/10.15294/jbat.v10i1.25323.

Syuhada, M., Sofa, S. A., & Sedyadi, E. (2020). The effect of cassava peel starch addition to bioplastic biodegradation based on chitosan on soil and river water media. Biology, Medicine, & Natural Product Chemistry, 9(1), 7–13. https://doi.org/10.14421/biomedich.2020.91.7-13.

Tang, K. H. D., Darwish, N. M., Alkahtani, A. M., AbdelGawwad, M. R., & Karácsony, P. (2022). Biological removal of dyes from wastewater: a review of its efficiency and advances. Tropical Aquatic and Soil Pollution, 2(1), 59–75. https://doi.org/10.53623/tasp.v2i1.72.

Ulyarti, U., Lavlinesia, L., Surhaini, S., Lisani, L., & Nazarudin, N. (2021). Development of Yam-Starch-Based Bioplastics with the Addition of Chitosan and Clove Oil. Makara Journal of Science, 25(5), 71–79. https://doi.org/10.7454/mss.v25i2.1155.

Wadaugsorn, K., Panrong, T., Wongphan, P., & Harnkarnsujarit, N. (2022). Plasticized hydroxypropyl cassava starch blended PBAT for improved clarity blown films: Morphology and properties. Industrial Crops and Products, 176. https://doi.org/10.1016/j.indcrop.2021.114311.

Wahib, S. A., Da’na, D. A., & Al-Ghouti, M. A. (2022). Insight into the extraction and characterization of cellulose nanocrystals from date pits. Arabian Journal of Chemistry, 15(3). https://doi.org/10.1016/j.arabjc.2021.103650.

Warkoyo, W., Rahardjo, B., Marseno, D. W., & Karyadi, J. N. W. (2014). Sifat fisik, mekanik dan barrier edible film berbasis pati umbi kimpul (Xanthosoma sagittifolium) yang diinkorporasi dengan kalium sorbat. Agritech, 34(1), 72–81. https://doi.org/10.22146/agritech.9525.

Widiatmono, B. R., Sulianto, A. A., & Debora, C. (2021). Biodegradabilitas Bioplastik Berbahan Dasar Limbah Cair Tahu dengan Penguat Kitosan dan Plasticizer Gliserol. Jurnal Sumberdaya Alam Dan Lingkungan, 8(1), 21–27. https://doi.org/10.21776/ub.jsal.2021.008.01.3.

Wongphan, P., Panrong, T., & Harnkarnsujarit, N. (2022). Effect of different modified starches on physical, morphological, thermomechanical, barrier and biodegradation properties of cassava starch and polybutylene adipate terephthalate blend film. Food Packaging and Shelf Life, 32. https://doi.org/10.1016/j.fpsl.2022.100844.

Wu, X., Liu, P., Zhao, X., Wang, J., Teng, M., & Gao, S. (2022). Critical effect of biodegradation on long-term microplastic weathering in sediment environments: a systematic review. Journal of Hazardous Materials, 437. https://doi.org/10.1016/j.jhazmat.2022.129287.

Yasin, N. M., Akkermans, S., & Van Impe, J. F. (2022). Enhancing the biodegradation of (bio) plastic through pretreatments: A critical review. Waste Management, 150, 1–12. https://doi.org/10.1016/j.wasman.2022.06.004.

Diterbitkan

2024-01-22

Cara Mengutip

Timbuleng, N. ., Naharia, O., Gedoan, S. P., Mokosuli, Y. S., Rahardiyan, D., & Moko, E. M. (2024). Biodegradasi Bioplastik Berbahan Dasar Pati Daluga (Cyrtosperma merkusii) dengan Cellulose Nano Crystal sebagai Agen Reinforcement sebagai Dasar Pengembangan Food Packaging. JST (Jurnal Sains Dan Teknologi), 12(3), 633–645. https://doi.org/10.23887/jstundiksha.v12i3.67917

Terbitan

Bagian

Articles