Investigasi Flexural Properties Hasil Cetak 3D Printer Berbahan Carbon Fiber Polylactic Acid untuk Pembuatan Telapak Kaki Palsu
DOI:
https://doi.org/10.23887/jstundiksha.v13i3.84387Kata Kunci:
Flexural Property, 3D Printing, Carbon Fiber, polylactic acidAbstrak
Telapak kaki palsu jenis Energy-storing-and-returning dan Bionic harus mempunyai kekuatan dan kekakuan tertentu. Material Polylactic Acid yang diperkuat dengan serat karbon (CF-PLA) dapat digunakan untuk meningkatkan kekuatan dari foot yang dibuat dengan 3D printing. Parameter proses dari 3D printing juga bisa digunakan untuk mendapatkan kekuatan tertentu dari foot. Tujuan dari penelitian ini adalah untuk menyelidiki pengaruh parameter 3D printing yaitu infill density, shell thickness, dan temperatur ekstruder terhadap rasio kekuatan tekuk dibanding massa, modulus kekakuan tekuk, dan regangan tekuk dari hasil cetakan berbahan CF-PLA serta memberi rekomendasi nilai parameter yang optimal. Rancangan eksperimen yang digunakan mengikuti metode Taguchi Grey Relational Analysis dengan tiga level dan dua kali replikasi. Spesimen uji tekuk berdasarkan standar ISO 178 digunakan sebagai obyek penelitian ini. Dari hasil penelitian dapat disimpulkan bahwa parameter infill density dan shell thickness adalah parameter yang berpengaruh. Penelitian ini berkontribusi memberikan wawasan bahwa material CF-PLA berpotensi digunakan untuk membuat telapak kaki palsu dengan proses 3D printing. Untuk mendapatkan nilai rasio kekuatan tekuk dan massa, modulus elastisitas tekuk, dan regangan tekuk yang maksimum, nilai yang direkomendasikan untuk infill density adalah sebesar 40%, shell thickness adalah sebesar 1,2 mm, dan temperatur ekstruder adalah sebesar 210 °C.
Referensi
Atakok, G., Kam, M., & Koc, H. B. (2022). Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: A statistical investigation. Journal of Materials Research and Technology, 18, 1542–1554. https://doi.org/10.1016/j.jmrt.2022.03.013.
Banks, B. P., Frei, J. S., Spencer, A., Renninger, K. D., Grover, J. K., Abbott, K., Carlson, B. J., & Bruening, D. A. (2023). Low-cost prosthetic feet for underserved populations: A comparison of gait analysis and mechanical stiffness. Prosthetics and Orthotics International, 47(4). https://journals.lww.com/poijournal/fulltext/2023/08000.
Bedan, A. S., Abbas, T. F., & Hussein, E. A. (2023). Prediction and investigation of the interactive impact of shell thickness and infill density on the mechanical properties, and the Mass of ABS Prints. Journal of Hunan University Natural Sciences, 50(1), 198–207. https://doi.org/10.55463/issn.1674-2974.50.1.20.
Butt, J., Bhaskar, R., & Mohaghegh, V. (2021). Investigating the effects of extrusion temperatures and material extrusion rates on FFF-printed thermoplastics. The International Journal of Advanced Manufacturing Technology, 117(9), 2679–2699. https://doi.org/10.1007/s00170-021-07850-5.
Chiriac, O. A., & Bucur, D. (2020). From conventional prosthetic feet to bionic feet. a review. Lecture Notes in Networks and Systems, 143(December), 130–138. https://doi.org/10.1007/978-3-030-53973-3_14.
Cui, Z., Huang, X., Jia, M., Panahi-Sarmad, M., Hossen, M. I., Dong, K., & Xiao, X. (2023). 3D printing of continuous fiber reinforced cellular structural composites for the study of bending performance. Journal of Reinforced Plastics and Composites, 42(13–14), 673–684. https://doi.org/10.1177/07316844221137017.
Dou, H., Cheng, Y., Ye, W., Zhang, D., Li, J., Miao, Z., & Rudykh, S. (2020). Effect of process parameters on tensile mechanical properties of 3D printing continuous carbon fiber-reinforced PLA composites. Materials, 13(17). https://doi.org/10.3390/ma13173850.
Gebrehiwot, S. Z., Espinosa Leal, L., Eickhoff, J. N., & Rechenberg, L. (2021). The influence of stiffener geometry on flexural properties of 3D printed polylactic acid (PLA) beams. Progress in Additive Manufacturing, 6(1), 71–81. https://doi.org/10.1007/s40964-020-00146-2.
Harpool, T. D., Alarifi, I. M., Alshammari, B. A., Aabid, A., Baig, M., Malik, R. A., Sayed, A. M., Asmatulu, R., & El-Bagory, T. M. A. A. (2021). Evaluation of the infill design on the tensile response of 3d printed polylactic acid polymer. Materials, 14(9), 1–20. https://doi.org/10.3390/ma14092195.
Kathrotiya, D., Yusuf, A., Bhagchandani, R. K., & Gupta, S. (2023). A Study for the development of prosthetic foot by additive manufacturing. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(3), 187. https://doi.org/10.1007/s40430-023-04107-y.
Khalili, A., Kami, A., & Abedini, V. (2023). Tensile and flexural properties of 3D-printed polylactic acid/continuous carbon fiber composite. Mechanics of Advanced Composite Structures, 10(2), 407–418. https://doi.org/10.22075/macs.2023.29500.1466.
Kristiawan, R. B., Imaduddin, F., Ariawan, D., Ubaidillah, & Arifin, Z. (2021). A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Engineering, 11(1), 639–649. https://doi.org/10.1515/eng-2021-0063.
Kumar, S., Teraiya, S., & Koriya, V. K. (2022). FDM Fabricated PLA Parts: an experimental study of effect of process parameters on mechanical properties under compressive and flexural loading. International Journal of Modern Manufacturing Technologies, 14(2), 111–120. https://doi.org/10.54684/ijmmt.2022.14.2.111.
Li, B., Xu, G., Teng, Z., Luo, D., Pei, J., Chen, R., & Zhang, S. (2024). Intelligent ankle–foot prosthesis based on human structure and motion bionics. Journal of NeuroEngineering and Rehabilitation, 21(1), 1–12. https://doi.org/10.1186/s12984-024-01414-w.
Maqsood, N., & Rimašauskas, M. (2021a). Characterization of carbon fiber reinforced PLA composites manufactured by fused deposition modeling. Composites Part C: Open Access, 4(January). https://doi.org/10.1016/j.jcomc.2021.100112.
Maqsood, N., & Rimašauskas, M. (2021b). Delamination observation occurred during the flexural bending in additively manufactured PLA-short carbon fiber filament reinforced with continuous carbon fiber composite. Results in Engineering, 11. https://doi.org/10.1016/j.rineng.2021.100246.
Maqsood, N., & Rimašauskas, M. (2021c). Tensile and flexural response of 3D printed solid and porous CCFRPC structures and fracture interface study using image processing technique. Journal of Materials Research and Technology, 14, 731–742. https://doi.org/10.1016/j.jmrt.2021.06.095.
Marabello, G., Chairi, M., & Di Bella, G. (2024). Optimising additive manufacturing to produce PLA sandwich structures by varying cell type and infill: Effect on flexural properties. Journal of Composites Science, 8(9). https://doi.org/10.3390/jcs8090360.
Medel, F., Abad, J., & Esteban, V. (2022). Stiffness and damping behavior of 3D printed specimens. Polymer Testing, 109(March), 107529. https://doi.org/10.1016/j.polymertesting.2022.107529.
Naranjo-Lozada, J., Ahuett-Garza, H., Orta-Castañón, P., Verbeeten, W. M. H., & Sáiz-González, D. (2019). Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing. Additive Manufacturing, 26(August 2018), 227–241. https://doi.org/10.1016/j.addma.2018.12.020.
Öteyaka, M. Ö., Aybar, K., & Öteyaka, H. C. (2021). Effect of infill ratio on the tensile and flexural properties of unreinforced and carbon fiber-reinforced polylactic acid Manufactured by Fused Deposition Modeling. Journal of Materials Engineering and Performance, 30(7), 5203–5215. https://doi.org/10.1007/s11665-021-05694-4.
Patel, K., Acharya, S., & Acharya, G. D. (2024). Taguchi grey relational analysis for multi-objective FDM parameter optimization of PLA components. Jurnal Kejuruteraan, 36(3), 1155–1165. https://doi.org/10.17576/jkukm-2024-36(3)-26.
Pirouzfar, S., & Zeinedini, A. (2021). Effect of geometrical parameters on the flexural properties of sandwich structures with 3D-printed honeycomb core and E-glass/epoxy Face-sheets. Structures, 33(April), 2724–2738. https://doi.org/10.1016/j.istruc.2021.06.033.
Rendas, P., Figueiredo, L., Geraldo, M., Vidal, C., & Soares, B. A. (2023). Improvement of tensile and flexural properties of 3D printed PEEK through the increase of interfacial adhesion. Journal of Manufacturing Processes, 93(March), 260–274. https://doi.org/10.1016/j.jmapro.2023.03.024.
Son Minh, P., Nguyen, V.-T., Uyen, T. M. T., Do, T. T., Duong Thi Van, A., & Nguyen Le Dang, H. (2024). The effects of 3D printing designs on PLA polymer flexural and fatigue strength. Journal of Micromechanics and Microengineering, 34(6), 65004. https://doi.org/10.1088/1361-6439/ad4b2a.
Subhash, N. N., Mehra, N., Choudhary, A., Baby, C. J., Aravind, A. U., Benny, P., & Muraleedharan, C. V. (2022). Structural performance assessment of fupro grace foot. Trends in Biomaterials and Artificial Organs, 36(2), 94–101.
Suteja, J., Firmanto, H., Soesanti, A., & Christian, C. (2022). Properties investigation of 3D printed continuous pineapple leaf fiber-reinforced PLA composite. Journal of Thermoplastic Composite Materials, 35(11), 2052–2061. https://doi.org/10.1177/0892705720945371.
Suteja, T. J., Handoko, R., & Soesanti, A. (2023). Optimization of infill density, layer height, and shell thickness to achieve maximum bending strength and minimum printing time of PLA 3D printed part. Polimesin, 21(5), 1–5. https://e-jurnal.pnl.ac.id/polimesin/article/view/3626/3230.
Suteja, T. J., & Soesanti, A. (2020). Mechanical properties of 3D printed polylactic acid product for various infill design parameters: A review. Journal of Physics: Conference Series, 1569(4). https://doi.org/10.1088/1742-6596/1569/4/042010.
Tacca, J. R., Colvin, Z. A., & Grabowski, A. M. (2023). Characterizing the mechanical properties of low-profile prosthetic feet. In bioRxiv (preprint). https://doi.org/10.1101/2023.04.14.536964.
Tamizi, N. S. M., Zainon, N., Deros, M. A. M., & Basri, A. A. (2022). Investigation on the effect of printing parameters on flexural properties of 3D printed polymeric scaffolds. Journal of Physics: Conference Series, 2169(1). https://doi.org/10.1088/1742-6596/2169/1/012027.
Tunçel, O., Tüfekci, K., & Kahya, Ç. (2024). Multi-objective optimization of 3D printing process parameters using gray-based Taguchi for composite PLA parts. Polymer Composites, April, 1–15. https://doi.org/10.1002/pc.28674.
Tyagi, B., Dixit, K., Sahai, A., & Sharma, R. S. (2024). Characterization of flexural and compressive behavior in polylactic acid composites for low‐cost transtibial prosthetic applications: Influence of reinforcements. Journal of Applied Polymer Science, 141(18), e55319.
Valvez, S., Santos, P., Parente, J. M., Silva, M. P., & Reis, P. N. B. (2020). 3D printed continuous carbon fiber reinforced PLA composites: A short review. Procedia Structural Integrity, 25(2019), 394–399. https://doi.org/10.1016/j.prostr.2020.04.056.
Vijayan, V., Kumar, S. A., Gautham, S., Masthan, M. M., & Piraichudan, N. (2020). Design and analysis of prosthetic foot using additive manufacturing technique. Materials Today: Proceedings, 37(Part 2), 1665–1671. https://doi.org/10.1016/j.matpr.2020.07.195.
Vinoth Babu, N., Venkateshwaran, N., Rajini, N., Ismail, S. O., Mohammad, F., Al-Lohedan, H. A., & Suchart, S. (2022). Influence of slicing parameters on surface quality and mechanical properties of 3D-printed CF/PLA composites fabricated by FDM technique. Materials Technology, 37(9), 1008–1025. https://doi.org/10.1080/10667857.2021.1915056.
Wang, K., Xie, X., Wang, J., Zhao, A., Peng, Y., & Rao, Y. (2020). Effects of infill characteristics and strain rate on the deformation and failure properties of additively manufactured polyamide-based composite structures. Results in Physics, 18(April), 103346. https://doi.org/10.1016/j.rinp.2020.103346.
Yadav, P., Sahai, A., & Sharma, R. S. (2021). Flexural strength and surface profiling of carbon-based PLA parts by additive manufacturing. Journal of The Institution of Engineers (India): Series C, 102(4), 921–931. https://doi.org/10.1007/s40032-021-00719-2.
Yousif, L. E., Abed, M. S., Al-Zubidi, A. B., & Resan, K. K. (2024). Innovations in prosthetic foot design enhancing durability, functionality and comfort through PLA composite filament 3D printing. Pigment & Resin Technology, ahead-of-p(ahead-of-print). https://doi.org/10.1108/PRT-10-2023-0092.
Zhang, H., Wu, J., Jia, M., Chen, Y., & Wang, H. (2023). Enhancement on the mechanical properties of 3D printing PEI composites via high thermal processing and fiber reinforcing. Polymers for Advanced Technologies, 34(10), 3115–3124. https://doi.org/https://doi.org/10.1002/pat.6128.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 The Jaya Suteja, Damario Poetra Elang Rahmawan , Sunardi Tjandra
Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)