METODE LEXICON-LEARNING BASED UNTUK IDENTIFIKASI TWEET OPINI BERBAHASA INDONESIA
DOI:
https://doi.org/10.23887/janapati.v6i3.11739Abstract
Media sosial telah lama digunakan masyarakat untuk menyampaikan opini maupun fakta terhadap suatu kejadian, khusunya twitter. Banyak metode yang diusulkan untuk mengekstrak tweet yang berisi opini. Diantaranya mengunakan pendekatan identifikasi kata kunci dalam suatu tweet yang lebih dikenal dengan istilah lexicon based. Meskipun metode ini memiliki nilai presisi yang cukup tinggi dalam mengidentifikasi suatu tweet opini, akan tetapi nilai recall yang dihasilkan cukup rendah. Hal ini karena keterbatasan lexicon yang digunkan sebagai identifier. Dalam penelitian ini, diusulkan kombinasi metode lexicon based dan machine learning dalam mengoptimalkan hasil identifikasi tweet opini. Hasil pengujian menunjukkan peningkatan nilai recall yang cukup signifikan jika dibandingkan dengan metode lexicon based dengan tetap menjaga nilai precision.Downloads
Published
2018-01-04
How to Cite
Azhar, Y. (2018). METODE LEXICON-LEARNING BASED UNTUK IDENTIFIKASI TWEET OPINI BERBAHASA INDONESIA. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 6(3), 237–242. https://doi.org/10.23887/janapati.v6i3.11739
Issue
Section
Articles
License
Authors who publish with Janapati agree to the following terms:- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)