PREDIKSI DATA TRANSAKSI PENJUALAN TIME SERIES MENGGUNAKAN REGRESI LSTM
DOI:
https://doi.org/10.23887/janapati.v9i1.19140Keywords:
Machine Learning, Time Prediction, Lstm for Regression, LstmAbstract
Sebagai upaya untuk memenangkan persaingan di pasar, perusahaan farmasi harus menghasilkan produk obat – obatan yang berkualitas. Untuk menghasilkan produk yang berkualitas, diperlukan perencanaan produksi yang baik dan efisien. Salah satu dasar perencanaan produksi adalah prediksi penjualan. PT. Metiska Farma telah menerapkan metode prediksi dalam proses produksi, akan tetapi prediksi yang dihasilkan tidak akurat sehingga menyebabkan tidak optimal dalam memenuhi permintaan pasar. Untuk meminimalisir masalah kurang akuratnya proses prediksi tersebut, dalam penelitian yang disajikan pada makalah ini dilakukan uji coba prediksi menggunakan teknik Machine Learning dengan metode Regresi Long Short Term Memory (LSTM). Teknik yang diusulkan diuji coba menggunakan dataset penjualan produk “X” dari PT. Metiska Farma dengan parameter kinerja Root Mean Squared Error (RMSE) dan MAPE (Mean Absolute Percentage Error). Hasil penelitian ini berupa nilai rata – rata evaluasi error dari pemodelan data training dan data testing. Di mana hasil menunjukan bahwa Regresi LSTM memiliki nilai prediksi penjualan dengan evaluasi model melalui RMSE sebesar 286.465.424 untuk data training dan 187.013.430 untuk data testing. Untuk nilai MAPE sebesar 787% dan 309% untuk data training dan data testing secara berurut.
References
R. A. Juanda, Jondri, and A. A. Rohmawati, “Prediksi Harga Bitcoin Dengan Menggunakan Recurrent Neural Network,” e-Proceeding Eng., vol. 5, no. 2, pp. 3682–3690, 2018.
N. K. M. T. Okwara, “Sistem Peramalan Dan Monitoring Persediaan Obat Di Rspg Cisarua Bogor Dengan Menggunakan Metode Single Exponential Smoothing Dan Reorder Point,” J. Ilm. Komput. dan Imformatika, pp. 45–52, 2013.
C. S. Hsu and J. R. Jiang, “Remaining useful life estimation using long short-term memory deep learning,” Proc. 4th IEEE Int. Conf. Appl. Syst. Innov. 2018, ICASI 2018, pp. 58–61, 2018.
S. Li, H. Fang, and B. Shi, “Multi-Step-Ahead Prediction with Long Short Term Memory Networks and Support Vector Regression,” Chinese Control Conf. CCC, vol. 2018-July, pp. 8104–8109, 2018.
J. Tian and X. Zhao, “Apply multiple linear regression model to predict the audit opinion,” 2009 Second ISECS Int. Colloq. Comput. Commun. Control. Manag. CCCM 2009, vol. 4, pp. 303–306, 2009.
J. Nangi et al., “Peramalan Persediaan Obat Menggunakan Metode Triple Exponential Smoothing (Tes) (Studi Kasus : Instalasi Farmasi Rsud Kab. Muna),” semanTIK, vol. 4, no. 1, pp. 135–142, 2018.
Y. Liu, Y. Qin, J. Guo, C. Cai, Y. Wang, and L. Jia, “Short-term forecasting of rail transit passenger flow based on long short-term memory neural network,” 2018 Int. Conf. Intell. Rail Transp. ICIRT 2018, pp. 1–5, 2019.
A. A. Rizal and S. Soraya, “Multi Time Steps Prediction dengan Recurrent Neural Network Long Short Term Memory,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 18, no. 1, pp. 115–124, 2018.
Xiao-Guang Zhang, Yi-Min Li, Shi-Jin Ren, and Ji-Hua Xu, “Robust wavelets support vector machine estimation method for regression,” no. August, pp. 998-1003 Vol. 2, 2005.
K. Adam, K. Smagulova, and A. P. James, “Memristive LSTM network hardware architecture for time-series predictive modeling problems,” 2018 IEEE Asia Pacific Conf. Circuits Syst. APCCAS 2018, pp. 459–462, 2019.
R. Bhowmik, J. Hartog, and M. Govindaraju, “Processing HDF5 datasets on multi-core architectures,” Proc. - Int. Conf. Adv. Inf. Netw. Appl. AINA, pp. 666–673, 2013.
N. P. Sakinah, I. Cholissodin, and A. W. Widodo, “Prediksi Jumlah Permintaan Koran Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 7, pp. 2612–2618, 2017.
R. Hidayat, “Meminimalisasi nilai error peramalandengan algoritma,” pp. 187–192, 2012.
D. Bhuriya, G. Kaushal, A. Sharma, and U. Singh, “Stock market predication using a linear regression,” Proc. Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2017, vol. 2017-Janua, pp. 510–513, 2017.
Z. Chen, Y. Liu, and S. Liu, “Mechanical state prediction based on LSTM neural netwok,” Chinese Control Conf. CCC, pp. 3876–3881, 2017.
R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Long short-term memory based operation log anomaly detection,” 2017 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2017, vol. 2017-Janua, pp. 236–242, 2017.
J. I. Matematika and S. D. Anggraini, “PREDIKSI NILAI TUKAR MATA UANG ASING MENGGUNAKAN EXTREME LEARNING MACHINE,” J. Ilm. Mat. ISSN 2301-9115, vol. 3, no. 6, pp. 110–115, 2017.
S. Ahmad and H. A. Latif, “Forecasting on the crude palm oil and kernel palm production: Seasonal ARIMA approach,” 2011 IEEE Colloq. Humanit. Sci. Eng. CHUSER 2011, vol. 2, no. Chuser, pp. 939–944, 2011.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with Janapati agree to the following terms:- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)