• Rusnandi Rusnandi STMIK Nusa Mandiri
  • Suparni Suparni Universitas Bina Sarana Informatika
  • Achmad Baroqah Pohan Universitas Bina Sarana Informatika



Data mining, Association Rules, Market Basket Analysis, Frequent Pattern Growth


Sales data in 3 different shops (shop, Shop Maker Fernando and Son) at Tohaga Market in the form of PD book transactions are only seen in the absence of follow-up to determine the decision on who will come. Party owner only records the transactions of products sold and only see income per month. But with that data should be utilized to strategize on sales to come. By using the method of Frequent Pattern Growth Algorithm, the store can take decisions which require goods inventory more compared to other goods, and the placement of the goods in accordance with the relationship between the goods that are usually purchased a consumer can also be determined based on a Minimum Support and Minimum Confidence. Based on Market Basket Analysis obtained from the calculation of the Association by using the method of Frequent Pattern Growth Algorithm, then search for the value of the support and confidence to use Association Rules, Rules that are generated will be test by using Software RapidMiner. Then the placement of goods and inventory items in 3 different stores can be controlled with either the service so that the consumer will be increased, which in turn can increase the sales turnover. In this study Support is determined using threshold 40% and 83% Confidence. Having regard to the relationship of support and confidence the store owner can provide and put the items to be sold


Alfanisa, A. F., & Algifanri, M. Penerapan Data Mining untuk Analisis Pola Pembelian Konsumen dengan Algoritma FP-GROWTH pada Data Transaksi Penjualan. Ilmu Komputer. 2018: 05(01): 27-36.

Ali, I., Dicky, N., & Sriani. Penerapan Data Mining dengan Algoritma Fp-Growth untuk Mendukung Strategi Promosi Pendidikan. STMIK Triguna Dharma – Medan; 2015.

Deni, R., & Agus, S. Algoritma FP-GROWTH dalam Penempatan Lokasi Barang di Gudang PT. XYZ. Jurnal Ilmu Pengetahuan Dan Teknologi Komputer. 2018: 4(1): 63-70.

Icca, A., Muhammad, Z. A., & Utomo, P. Penerapan Algoritma FP-Growth Dalam Penentuan Pola Pembelian Konsumen Pada Kain Tenun Medali Mas. Jurnal Matrix. 2019: 9(1): 32-40.

Ida, A. S. P., & Luh,P. P. S. P. Analisis Pola Kunjungan Obyek Wisata di Bali menggunakan Algoritma FP-GROWTH. Media Aplikom. 2018: 10(2): 158-177.

Mateus, P. T., Fitri, M., & Indra, D. W. (2018). Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Pada Toko Oase Menggunakan Algoritma Apriori. 3(2), 17–22.

Ridwan, R., Lucki, D., & Arief, P. (2017). Penerapan Algoritma APRIORI dalam menentukan Pembelian Konsumen di Kafe Hidden Toast and Float. 04(02), 83–88.

Gunadi, G., & Dana, I. S. (2012). Penerapan Metode Data Mining Market Basket Analysis terhadap Data Penjualan Produk Buku dengan menggunakan Algoritma APRIORI dan Frequent Pattern Growth (FP-GROWTH) : Studi Kasus Percetakan PT.GRAMEDIA. 4(1).

Elwani. (2017). Penentuan Aturan Asosiasi pada Transaksi Peminjaman Buku menggunakan Algoritma FP-GROWTH. 9(1), 15–25.

Eka, L. F., & Suryadi, S. (2018). Penerapan Data Mining dengan Algoritma APRIORI. STMIK Royal-AMIK Royal, 173–176.




How to Cite

Rusnandi, R., Suparni, S., & Pohan, A. B. (2020). PENERAPAN DATA MINING UNTUK ANALISIS MARKET BASKET DENGAN ALGORITMA FP-GROWTH PADA PD PASAR TOHAGA. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 9(1), 119–133.