Implementasi Kombinasi Metode Mean Denoising dan Convolutional Neural Network pada Facial Landmark Detection
DOI:
https://doi.org/10.23887/janapati.v10i1.29779Keywords:
Facial Landmark Detection, Denoising, CNNAbstract
Facial landmark detectionmerupakan bagian dari facial recognition,bertujuan untuk mengidentifikasi titik fokus pada wajah berdasarkan ciri penampakan bagian wajah yang cenderung menonjol, seperti area mata, hidung, bibir, serta tulang pipi. Facial landmark detection sering diimplementasikan pada bidang pengenalan wajah, prediksi pose wajah, rekonstruksi wajah 3 dimensi, serta pengembangan sistem deteksi kelelahan karyawan berdasarkan ekspresi wajah. Seiring bertambahnya ketersediaan citra wajah dan kebutuhan proses komputasi yang cepat, metode Convolutional Neural Network (CNN) diimplementasikan pada facial landmark detection. Namun beragamnya kualitas citra menyebabkan CNN kurang optimal dalam melakukan deteksi. Oleh karena itu guna mengatasi permasalahan terkait kualitas citra ini, diimplementasikan metode mean denoising sebagai upaya peningkatan nilai akurasi CNN dalam melakukan pendeteksian landmark wajah. Dataset citra wajah diperoleh dari platform Kaggle, LFW-People, AFLW200 dan Female Facial Image Dataset, dengan total sebanyak 2.050 citra wajah, dan terbagi menjadi 2.000 data latih dan 50 data uji. Berdasarkan hasil pengujian, kombinasi metode CNN dengan mean denoising menghasilkan peningkatan akurasi yang lebih baik dalam pengenalan objek pada wajah pada kualitas citra yang heterogen dengan rata-rata akurasi pengujian sebesar 81,33%.Akurasi yang cukup baik ini didapatkan karena citra wajah masukan dilakukan penghilangan noise terlebih dahulu sehingga fitur dari citra yang seringkali menyebabkan sistem CNN salah dalam mengidentifikasi objek pada wajah dapat diminimalisir.References
Y. Wu and Q. Ji, “Facial Landmark Detection: A Literature Survey,” Int. J. Comput. Vis., vol. 127, no. 2, pp. 115–142, 2019, doi: 10.1007/s11263-018-1097-z.
A. Juhong and C. Pintavirooj, “Face recognition based on facial landmark detection,” BMEiCON 2017 - 10th Biomed. Eng. Int. Conf., vol. 2017-Janua, no. December, pp. 1–4, 2017, doi: 10.1109/BMEiCON.2017.8229173.
Z. Liu, Z. Chen, J. Bai, S. Li, and S. Lian, “Facial pose estimation by deep learning from label distributions,” Proc. - 2019 Int. Conf. Comput. Vis. Work. ICCVW 2019, pp. 1232–1240, 2019, doi: 10.1109/ICCVW.2019.00156.
J. Booth et al., “3D Reconstruction of ‘In-the-Wild’ Faces in Images and Videos,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 8, pp. 1–14, 2018.
C. Zhang, X. Lu, Z. Huang, S. Xia, and C. Fu, “A Driver Fatigue Recognition Algorithm Based on Spatio-Temporal Feature Sequence,” Proc. - 2019 12th Int. Congr. Image Signal Process. Biomed. Eng. Informatics, CISP-BMEI 2019, 2019, doi: 10.1109/CISP-BMEI48845.2019.8965990.
M. J. Baculo and J. Azcarraga, “Emotion Recognition on Selected Facial Landmarks Using Supervised Learning Algorithms,” in Proceedings - 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018, 2019, pp. 1483–1489, doi: 10.1109/SMC.2018.00258.
H. Gao and L. Yuan, “Research on key technology of pavement object recognition based on machine learning,” Neural Comput. Appl., vol. 32, no. 10, pp. 5483–5493, 2020, doi: 10.1007/s00521-019-04643-6.
K. Topare, T. Pawar, Y. Patil, and N. Dudhagawali, “IP based drowsiness detector for Real Driving Conditions,” no. 20160301, pp. 4–7, 2016.
S. Junaedi and H. Akbar, “Driver Drowsiness Detection Based on Face Feature and PERCLOS,” J. Phys. Conf. Ser., vol. 1090, no. 1, 2018, doi: 10.1088/1742-6596/1090/1/012037.
X. Zou, S. Zhong, L. Yan, X. Zhao, J. Zhou, and Y. Wu, “Learning robust facial landmark detection via hierarchical structured ensemble,” in Proceedings of the IEEE International Conference on Computer Vision, 2019, vol. 2019-Octob, pp. 141–150, doi: 10.1109/ICCV.2019.00023.
J. Lv, X. Shao, J. Xing, C. Cheng, and X. Zhou, “A deep regression architecture with two-stage re-initialization for high performance facial landmark detection,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 3691–3700, 2017, doi: 10.1109/CVPR.2017.393.
M. Zhu, D. Shi, M. Zheng, and M. Sadiq, “Robust facial landmark detection via occlusion-adaptive deep networks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 3481–3491, 2019, doi: 10.1109/CVPR.2019.00360.
R. Jabbar, K. Al-Khalifa, M. Kharbeche, W. Alhajyaseen, M. Jafari, and S. Jiang, “Real-time Driver Drowsiness Detection for Android Application Using Deep Neural Networks Techniques,” Procedia Comput. Sci., vol. 130, pp. 400–407, 2018, doi: 10.1016/j.procs.2018.04.060.
S. A. Lee, J. Kim, J. M. Lee, Y.-J. Hong, I.-J. Kim, and J. D. Lee, “Automatic Facial Recognition System Assisted-facial Asymmetry Scale Using Facial Landmarks,” Otol. Neurotol., vol. 41, no. 8, pp. 1140–1148, 2020, doi: 10.1097/mao.0000000000002735.
A. Y. Wijaya, R. Soelaiman, J. T. Informatika, and F. T. Informasi, “Klasifikasi Citra Menggunakan Convolutional Neural Network ( Cnn ) Pada Caltech 101 Image Classfication Using Convolution Neural Network ( Cnn ) on Caltech 101,” vol. 5, no. 1, 2016.
C. Tian, Y. Xu, Z. Li, W. Zuo, L. Fei, and H. Liu, “Attention-guided CNN for image denoising,” Neural Networks, vol. 124, pp. 117–129, 2020, doi: 10.1016/j.neunet.2019.12.024.
K. A. Aryani, D. G. H. Divayana, and I. M. A. Wirawan, “Sistem Pakar Diagnosis Penyakit Jerawat di Wajah dengan Metode Certainty Factor,” J. Nas. Pendidik. Tek. Inform., vol. 6, no. 2, p. 96, 2017, doi: 10.23887/janapati.v6i2.11496.
I. P. A. E. D. U. Udayana and P. G. S. C. Nugraha, “Prediksi Citra Makanan Menggunakan Convolutional Neural Network Untuk Menentukan Besaran Kalori Makanan,” J. Teknol. Inf. dan Komput., vol. 6, no. 1, pp. 30–38, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with Janapati agree to the following terms:- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)