Penerapan Algoritma Support Vector Machine dan Multi-Layer Perceptron pada Klasifikasi Topik Berita

Authors

  • Sudianto Sudianto Institut Teknologi Telkom Purwokerto
  • Asti Dwi Sripamuji Institut Teknologi Telkom Purwokerto
  • Imada Riski Ramadhanti Institut Teknologi Telkom Purwokerto
  • Risa Riski Amalia Institut Teknologi Telkom Purwokerto
  • Julian Saputra Institut Teknologi Telkom Purwokerto
  • Bagas Prihatnowo Institut Teknologi Telkom Purwokerto

Keywords:

Berita, Klasifikasi, Support Vector Machine, Multi-Layer Perceptron, TF-IDF

Abstract

Salah satu aktivitas masyarakat Indonesia di internet adalah mengakses berita online dengan persentase 15,5%. Dalam mencerna suatu informasi berita online, masyarakat Indonesia masih memiliki kebiasaan yang buruk ketika membaca lebih dari satu sumber media online pada kasus yang sama. Sehingga perlu adanya klasifikasi berita secara otomatis. Penelitian sebelumnya menggunakan Mutual Information and Bayesian Network untuk mengkategorikan suatu berita, dalam format data tekstual dengan akurasi 75.34%. Penelitian ini memberikan suatu inovasi baru berupa pengimplementasian algoritma Support Vector Machine dan Multi-Layer Perceptron untuk klasifikasi menggunakan pembelajaran supervised atau yang disebut backpropagation. Tujuan dari pengklasifikasian topik berita menggunakan Algoritma Support Vector Machine memudahkan pembaca untuk menemukan informasi yang pembaca butuhkan, dengan secara otomatis mengelompokkan berita ke dalam kategori tertentu sesuai informasi yang terkandung. Metode yang digunakan yaitu metode Term Frequency – Inverse Document Frequency untuk feature selection data pelatihan dan algoritma Support Vector Machines dan Multi-Layer Perceptron untuk klasifikasi. Hasil yang diperoleh menunjukan skor akurasi sebesar 74% pada SVM dan 78% pada MLP. Sementara itu, nilai precision dan recall yaitu 76% dan 74% pada SVM serta 79% dan 78% pada MLP.

References

I. Etin, “Pengelolaan Sistem Informasi Akademik Perguruan Tinggi Berbasis Teknologi Informasi dan Komunikasi,” J. Penelit. Pendidik., vol. 12, no. 1, pp. 51–67, 2006, [Online]. Available: https://files.indihomestudy.com/pdf/ac6c9913-953a-4c0a-9426-800cffcd8ece.pdf.

Kemkominfo, “Survei Literasi Digital Indonesia 2020,” Katadata Insight Cent., no. November, p. 32, 2020.

K. B. Dinata, “ANALISIS KEMAMPUAN LITERASI DIGITAL MAHASISWA COVID-19 proses Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan . Dampak yang mandiri . Salah satu kemampuan yang berperan cukup penting dalam memfasilitasi,” Edukasi J. Pendidik., vol. 19, no. 1, pp. 105–119, 2021, doi: 10.31571/edukasi.v19i1.

I. G. Hartari, N. M. Gelgel, and N. L. Purnawan, “Analisis Isi Berita Kekerasan Seksual Tribunnews.Com (Periode Berita Desember 2018),” E-Jurnal Mediu., vol. 1, no. 2, pp. 1–12, 2019.

P. Widodo, J. A. Putra, S. Afiadi, A. Z. Arifin, and D. Herumurti, “Klasifikasi Kategori Dokumen Berita Berbahasa Indonesia Dengan Metode Kategorisasi Multi-Label Berbasis Domain Specific Ontology,” J. Ilm. Teknol. Infomasi Terap., vol. 2, no. 2, pp. 101–112, 2016, doi: 10.33197/jitter.vol2.iss2.2016.100.

Y. D. Pramudita, S. S. Putro, and N. Makhmud, “Klasifikasi Berita Olahraga Menggunakan Metode Naïve Bayes dengan Enhanced Confix Stripping Stemmer,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 3, p. 269, 2018, doi: 10.25126/jtiik.201853810.

F. Handayani and S. Pribadi, “Implementasi Algoritma Naive Bayes Classifier dalam Pengklasifikasian Teks Otomatis Pengaduan dan Pelaporan Masyarakat melalui Layanan Call Center 110,” J. Tek. Elektro, vol. 7, no. 1, pp. 19–24, 2015, doi: 10.15294/jte.v7i1.8585.

F. S. Nurfikri, M. S. Mubarok, and Adiwijaya, “News topic classification using mutual information and Bayesian network,” 2018 6th Int. Conf. Inf. Commun. Technol. ICoICT 2018, vol. 0, no. c, pp. 162–166, 2018, doi: 10.1109/ICoICT.2018.8528806.

L. G. Irham, A. Adiwijaya, and U. N. Wisesty, “Klasifikasi Berita Bahasa Indonesia Menggunakan Mutual Information dan Support Vector Machine,” J. Media Inform. Budidarma, vol. 3, no. 4, p. 284, 2019, doi: 10.30865/mib.v3i4.1410.

A. RAHUTOMO, FAISAL; MIQDAD MUADZ MUZAD, “Indonesian News Corpus.” Mendeley Data V1, 2018, doi: 10.17632/2zpbjs22k3.1.

W. A. S. J. H. M. Nugroho, “Kompas.com,” [Online]. Available: https://inside.kompas.com/.

W. D. B. S. Y. T. Aryanto, “Tempo.co,” [Online]. Available: https://www.tempo.co/.

“Merdeka.com,” [Online]. Available: https://www.merdeka.com.

M. R. Djarot, “Republika.co.id,” [Online]. Available: https://www.republika.co.id/.

I. W. T. Pribadi, “Viva.co.id,” [Online]. Available: https://www.viva.co.id/.

D. D. S. F. M. Putra, “Tribunnews.com,” [Online]. Available: http://www.tribunnews.com/.

K. Kowsari, K. J. Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and D. Brown, “Text classification algorithms: A survey,” Inf., vol. 10, no. 4, pp. 1–68, 2019, doi: 10.3390/info10040150.

M. Wongkar and A. Angdresey, “Sentiment Analysis Using Naive Bayes Algorithm Of The Data Crawler: Twitter,” Proc. 2019 4th Int. Conf. Informatics Comput. ICIC 2019, no. July, 2019, doi: 10.1109/ICIC47613.2019.8985884.

R. S. Rajput and S. R. Patra, “Survey Paper on Sentiment Analysis using NLP,” vol. 1, no. 02, 2021.

A. Kumar, A. Jaiswal, S. Garg, S. Verma, and S. Kumar, “Sentiment Analysis Using Cuckoo Search for Optimized Feature Selection on Kaggle Tweets,” Int. J. Inf. Retr. Res., vol. 9, no. 1, pp. 1–15, 2018, doi: 10.4018/ijirr.2019010101.

Y. Zhai, W. Song, X. Liu, L. Liu, and X. Zhao, “A Chi-Square Statistics Based Feature Selection Method in Text Classification,” Proc. IEEE Int. Conf. Softw. Eng. Serv. Sci. ICSESS, vol. 2018-November, pp. 160–163, 2019, doi: 10.1109/ICSESS.2018.8663882.

S. Qaiser and R. Ali, “Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents,” Int. J. Comput. Appl., vol. 181, no. 1, pp. 25–29, 2018, doi: 10.5120/ijca2018917395.

S. Ghosh and M. S. Desarkar, “Class Specific TF-IDF Boosting for Short-text Classification,” pp. 1629–1637, 2018, doi: 10.1145/3184558.3191621.

Z. Zhu, J. Liang, D. Li, H. Yu, and G. Liu, “Hot Topic Detection Based on a Refined TF-IDF Algorithm,” IEEE Access, vol. 7, pp. 26996–27007, 2019, doi: 10.1109/ACCESS.2019.2893980.

S. W. Kim and J. M. Gil, “Research paper classification systems based on TF-IDF and LDA schemes,” Human-centric Comput. Inf. Sci., vol. 9, no. 1, 2019, doi: 10.1186/s13673-019-0192-7.

C. Z. Liu, Y. X. Sheng, Z. Q. Wei, and Y. Q. Yang, “Research of Text Classification Based on Improved TF-IDF Algorithm,” 2018 IEEE Int. Conf. Intell. Robot. Control Eng. IRCE 2018, no. 2, pp. 69–73, 2018, doi: 10.1109/IRCE.2018.8492945.

X. Yan and M. Jia, “A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing,” Neurocomputing, vol. 313, pp. 47–64, 2018, doi: 10.1016/j.neucom.2018.05.002.

S. Puri and S. P. Singh, An Efficient Hindi Text Classification Model Using SVM, no. March 2021. Springer Singapore, 2019.

F. Wang, Z. Zhen, B. Wang, and Z. Mi, “applied sciences Comparative Study on KNN and SVM Based Weather Classification Models for Day Ahead Short Term Solar PV Power Forecasting,” doi: 10.3390/app8010028.

T. B. Shahi, “Nepali News Classification using Naïve Bayes , Support Vector Machines and Neural Networks,” pp. 18–22, 2018.

G. Alimjan, T. Sun, Y. Liang, H. Jumahun, and Y. Guan, “A New Technique for Remote Sensing Image Classification Based on Combinatorial Algorithm of SVM and KNN,” Int. J. Pattern Recognit. Artif. Intell., vol. 32, no. 7, pp. 1–23, 2018, doi: 10.1142/S0218001418590127.

B. T. Pham, M. D. Nguyen, K. T. T. Bui, I. Prakash, K. Chapi, and D. T. Bui, “A novel artificial intelligence approach based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coefficient of consolidation of soil,” Catena, vol. 173, no. July 2018, pp. 302–311, 2019, doi: 10.1016/j.catena.2018.10.004.

J. Jeyanathan, … P. J.-I. J. of, and undefined 2018, “Transform based Classification of Breast Thermograms using Multilayer Perceptron Back Propagation Neural Network,” Acadpubl.Eu, vol. 118, no. 20, pp. 1955–1961, 2018, [Online]. Available: http://www.acadpubl.eu/hub/2018-118-21/articles/21c/7.pdf.

N. B. Gaikwad, V. Tiwari, A. Keskar, and N. C. Shivaprakash, “Efficient FPGA Implementation of Multilayer Perceptron for Real-Time Human Activity Classification,” IEEE Access, vol. 7, pp. 26696–26706, 2019, doi: 10.1109/ACCESS.2019.2900084.

C. Kar, A. Kumar, and S. Banerjee, “Tropical cyclone intensity detection by geometric features of cyclone images and multilayer perceptron,” SN Appl. Sci., vol. 1, no. 9, 2019, doi: 10.1007/s42452-019-1134-8.

Downloads

Published

2022-08-07

How to Cite

Sudianto, S., Sripamuji, A. D., Ramadhanti, I. R., Amalia, R. R., Saputra, J., & Prihatnowo, B. (2022). Penerapan Algoritma Support Vector Machine dan Multi-Layer Perceptron pada Klasifikasi Topik Berita. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 11(2), 84–91. Retrieved from https://ejournal.undiksha.ac.id/index.php/janapati/article/view/44151

Issue

Section

Articles