Analisis Clustering Kasus Covid 19 di Indonesia Menggunakan Algoritma K-Means
DOI:
https://doi.org/10.23887/janapati.v11i2.45376Keywords:
clustering, K-Means, data mining, Covid 19, IndonesiaAbstract
Kasus Covid 19 semakin meningkat di Indonesia. Penelitian ini bermaksud untuk menerapkan teknik penambangan data (data mining) dengan algoritma clustering K-Means. Penelitian ini menganalisiis pola penyebaran Covid 19 dengan mengelompokan kasus Covid 19 di Indonesia yang didapatkan dari website dataset Kaggle. Metode penambangan data (data mining) yang digunakan yaitu Cross Industry Standard Process for Data-Mining (CRISP-DM). Penelitian ini mengembangkan dari penelitian yang terdahulu dengan data dan atribut yang lebih banyak. Data yang digunakan sebanyak 16.284 dari tanggal 1 Maret 2020 hingga 9 Juli 2021. Pengelompkan provinsi di Indonesia ke beberapa cluster tertentu sehingga dapat mengetahui daerah dengan jumlah kasus yang banyak dan yang sedikit serta karakteristiknya. Hasil klasterisasi provinsi diharapkan dapat memberikan saran kepada pemerintah dalam membuat aturan atau kebijakan terkait pembatasan kegiatan masyarakat atau kebijakan lainnya dalam mengatasi penyebaran COVID-19. Penentuan jumlah cluster yang optimal atau validasi cluster menggunakan David Boulden index (DBI). Cluster yang terbaik ditentukan dari nilai David Boulden Index yang terendah. Hasil penelitian ini diperoleh 3 cluster yang terbaik dengan nilai DBI terendah, yaitu sebesar 0,47. Cluster 1 terdiri dari 30 provinsi, Cluster 2 dan 3 masing-masing 2 provinsi. Saran untuk peneliti selanjutnya yaitu menambahkan algoritma clustering yang lain dan membandingkan beberapa algoritma untuk memperoleh hasil yang terbaik.
References
H. Fransiska, “Clustering Provinces in Indonesia Based on Daily Covid-19 Cases,” J. Phys. Conf. Ser., vol. 1863, no. 1, 2021.
W. Utomo, “The comparison of k-means and k-medoids algorithms for clustering the spread of the covid-19 outbreak in Indonesia,” Ilk. J. Ilm., vol. 13, no. 1, pp. 31–35, 2021.
R. Djalante et al., “Review and analysis of current responses to COVID-19 in Indonesia: Period of January to March 2020,” Prog. Disaster Sci., vol. 6, 2020.
T. Hardiani, S. Sulistyo, and R. Hartanto, “pada Lembaga Keuangan Mikro,” vol. 03, pp. 181–187, 2014.
Z. R. S. Elsi et al., “Utilization of Data Mining Techniques in National Food Security during the Covid-19 Pandemic in Indonesia,” J. Phys. Conf. Ser., vol. 1594, no. 1, 2020.
S. Sindi, W. R. O. Ningse, I. A. Sihombing, F. Ilmi R.H.Zer, and D. Hartama, “Analisis algoritma K-Medoids clustering dalam pengelompokan penyebaran Covid-19 di Indonesia,” Jti (Jurnal Teknol. Informasi), vol. 4, no. 1, pp. 166–173, 2020.
R. A. Indraputra and R. Fitriana, “K-Means Clustering Data COVID-19,” J. Tek. Ind., vol. 10, no. 3, p. 3, 2020.
K. Hammouda, “A Comparative Study of Data Clustering Techniques,” pp. 1–21.
N. Suarna, Y. A. Wijaya, Mulyawan, T. Hartati, and T. Suprapti, “Comparison K-Medoids Algorithm and K-Means Algorithm for Clustering Fish Cooking Menu from Fish Dataset,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1088, no. 1, p. 012034, 2021.
R. Kurniawan, S. N. H. S. Abdullah, F. Lestari, M. Z. A. Nazri, A. Mujahidin, and N. Adnan, “Clustering and Correlation Methods for Predicting Coronavirus COVID-19 Risk Analysis in Pandemic Countries,” 2020 8th Int. Conf. Cyber IT Serv. Manag. CITSM 2020, 2020.
M. R. Mahmoudi, D. Baleanu, Z. Mansor, B. A. Tuan, and K. H. Pho, “Fuzzy clustering method to compare the spread rate of Covid-19 in the high risks countries,” Chaos, Solitons and Fractals, vol. 140, pp. 1–9, 2020.
A. Mahmudan, “Clustering of District or City in Central Java Based COVID-19 Case Using K-Means Clustering,” J. Mat. Stat. dan Komputasi, vol. 17, no. 1, pp. 1–13, 2020.
D. Abdullah, S. Susilo, A. S. Ahmar, R. Rusli, and R. Hidayat, “The application of K-means clustering for province clustering in Indonesia of the risk of the COVID-19 pandemic based on COVID-19 data,” Qual. Quant., no. 0123456789, 2021.
Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021.
R. Wirth, “CRISP-DM : Towards a Standard Process Model for Data Mining,” no. 24959.
T. Hardiani, “Comparison of Naive Bayes Method, K-NN (K-Nearest Neighbor) and Decision Tree for Predicting the Graduation of ‘Aisyiyah University Students of Yogyakarta,” Int. J. Heal. Sci. Technol., vol. 2, no. 1, pp. 75–85, 2021.
T. Hardiani, “Segmentasi Nasabah Simpanan Menggunakan Fuzzy C Means Dan Fuzzy Rfm ( Recency , Frequency , Monetary ) Pada Bmt Xyz,” J. Ilm. NERO, vol. 3, no. 3, pp. 185–192, 2018.
A. Nadali and H. E. Nosratabadi, “Evaluating the Success Level of Data Mining Projects Based on CRISP-DM Methodology by a Fuzzy Expert System,” IEEE, pp. 161–165, 2011.
U. Shafique and H. Qaiser, “A Comparative Study of Data Mining Process Models ( KDD , CRISP-DM and SEMMA ),” Int. J. Innov. Sci. Res., vol. 12, no. 1, pp. 217–222, 2014.
Y. A. Wijaya, D. A. Kurniady, E. Setyanto, W. S. Tarihoran, D. Rusmana, and R. Rahim, “Davies Bouldin Index Algorithm for Optimizing Clustering Case Studies Mapping School Facilities,” TEM J., vol. 10, no. 3, pp. 1099–1103, 2021.
M. Mughnyanti, S. Efendi, and M. Zarlis, “Analysis of determining centroid clustering x-means algorithm with davies-bouldin index evaluation,” IOP Conf. Ser. Mater. Sci. Eng., vol. 725, no. 1, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Tikaridha Hardiani
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Janapati agree to the following terms:- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)