Deteksi Perubahan Penggunaan Lahan dan Penutup Lahan Pada Citra Multispectral Berdasarkan Pendekatan Codebook dan Keyblock

Authors

  • I Gusti Agung Gede Arya Kadyanan Universitas Udayana

DOI:

https://doi.org/10.23887/janapati.v11i2.49102

Keywords:

Change Detection, Multispectral, Keyblock, Index, Generalize Lloyd Algorithm

Abstract

Penelitian ini membahas Keyblock sebagai metode baru yang diusulkan untuk deteksi perubahan pada citra multispektral. Keyblock adalah generalisasi dari teknologi temu kembali informasi berbasis teks dalam domain citra. Tujuan utama penelitian ini adalah untuk menemukan codebook dan indeks dengan ukuran tertentu dari sekumpulan blok citra pelatihan. Dari codebook dan indeksnya kami mencoba mendeteksi perubahan dari T1 dan T2 dimana Tn adalah beberapa citra temporal dari citra satelit Ikonos. Penelitian ini menekankan pada perbandingan kedua citra temporal. Makalah ini akan menjawab pertanyaan penelitian: Bisakah kita menggunakan Keyblock dalam deteksi perubahan multispektral? Pertama, kami ingin menjelaskan prinsip dasar metode keyblock dalam pemrosesan citra, kemudian kami mencoba untuk melakukan eksperimen di dalamnya. Selanjutnya dirangkum implementasi keyblock framework. Dengan nilai RMS_error yang relatif kecil yaitu sebesar 9 tingkat dan histogram yang serupa sehingga antara citra satelit asli dan citra satelit rekonstruksi terlihat tidak terlalu berbeda, maka codebook yang dibangun dapat digunakan sebagai vektor quantizer.

References

Coppin , R. Pol., and Marvin, E. Bauer, “Processing of Multitemporal Landsat TM Imagery to Optimize Extraction of Forest Cover Change Features”, IEEE Transactions on Geoscience and Remote Sensing, 32(4):918-927, 1994

Duda O., Peter, Hart E., Peter, Stork G., David, Pattern Classification, 2nd Edition, John Wiley & Sons, 2001

Gonzalez, Rafael C., Richards E., Woods, Digital Image Processing, Addison-Wesley Publishing Company, 1993

Hardiyanti, Sri F. P., Interpretasi Citra Digital, Jakarta : Gramedia Widiasarana Indonesia, 2001

Hussein N., “A Fast Greedy K-Means Algorithm”, Master’s Thesis, University of Amsterdam, Netherlands, 2002

J. Eakins dan M. Graham, “Content-based Image Retrieval,” Technology Applications Programme Report 39, University of Northumbria at Newcastle, October 1999.

Jensen J. R., Introduction Digital Image Processing, A Remote Sensing Perspective, 2nd Edition, Prentice-Hall Inc., USA, 1996

Johnson D. R. and Kasischke, S.E., “Change Vector Analysis: Technique or The Multispectral Monitoring of Land Cover and Condition”, International Journal of Remote Sensing, 19(3):411-426, 1998

L. Zhu dan A. Zhang, “Theory of Keyblock-based Image Retrieval,” ACM Journal, pp. 1-32, March 2002.

L. Zhu, A. Rao, dan A. Zhang, “Advanced Feature Extraction for Keyblok-based Image Retrieval,” Proceedings of International Workshop on Multimedia Information Retrieval (MIR 2000), Los Angeles, California, USA, November 4, 2000.

L. Zhu, A. Rao, dan A. Zhang, 2000, “Keyblok: An approach for content-based geographic image retrieval,” Proceedings of First International Conference on Geographic Information Science (GIScience2000), Savannah, Georgia, USA, 286–287, 2000.

L. Zhu, C. Tang, dan A. Zhang, “Using Key blok Statistics to Model Image Retrieval,” Advances in Multimedia Information Processing – PCM 2001, Second IEEE Pacific Rim Conference on Multimedia, Beijing, China, October 24-26, 2001, Proceedings 2001.

Likas, Aristidis, Vlassis Nikos, Verbeek J., Jacob, “The Global K-Means Clustering Algorithm”, In Pattern Recognition, 36(2), 2003

Lillesand, Thomas M., Kiefer Ralph W., Remote Sensing and Image Interpretation, John Wiley & Sons Inc., 2000

Metternicht, Graciela, “Change Detection Assessment Using Fuzzy Sets and Remotely Sensed Data : An Application of Topographic Map Revision”, Journal of Photogrammetry & Remote Sensing, 54:221-233, 1999

Munibah, Khursatul, “Mangrove Change Detection Using The Landsat Thematic Mapper and Effects on Mangrove Soils Characteristics A Case Study of The North Coast of Subang, West Java, Indonesia”, Master’s Thesis, Asian Institute of Technology, Bangkok -Thailand, 1998

Murni, Aniati dan Setiawan, Suryana, Pengantar Pengolahan Citra, Jakarta: Elex Media Komputindo, 1992

Nelson, R. F., “Detecting Forest Canopy Change due to Insect Activity using Landsat MSS”, Photogrametric Engineering & Remote Sensing, 49:1303-1314, 1983

Nikolaidis, N., and Pitas I., 3-D Image Processing Algorithms, John-Wiley & Sons Inc., 2001

P. Brodatz, “Textures”, New York, Dover, 1966.

Parker, J.R., Algorithms for Image Processing and Computer Vision, Wiley Computer Publishing, John-Wiley & Sons Inc., 1997

Pratt, K., William, Digital Image Processing, 2nd Edition, John-Wiley & Sons Inc., 1991

R. M. Haralick, K. Shanmugam, dan I. Dinstein, “Textural Feature for Image Classification,” IEEE Transactions on Sistem, Man dan Cybernetics, Vol SMC-3 No. 6, November 1973.

Ronald A.Rensink. Departments of Psychology and Computer Science, University of British Columbia, Vancouver, British Columbia, V6T1Z4 Canada; e-mail: ensink@psych.ubc.ca.

Sirait, Pahala, “Deteksi Perubahan Wilayah dengan Pendekatan Segmentasi Tiga Dimensi Split-Merge dan Nilai Ambang Otomatis”, 2004

Wellner, D., Pierre, “Adaptive Thresholding for the Digital Desk”, EuroPARC Technical Report BPC:93-110, 1993

Yamamoto, Takahiro, Hamaizumi, Hiroshi,”A Change Detection Method for Remotely Sensed Multispectral and Multitemporal Images Using 3-D Segmentation”, IEEE Trans. On Geoscience and Remote Sensing, 39(5), 2001

Yates, R.B, dan B.R. Neto. Modern Information Retrieval. Addison Wesley, 1999.

Downloads

Published

2022-08-07

How to Cite

Kadyanan, I. G. A. G. A. (2022). Deteksi Perubahan Penggunaan Lahan dan Penutup Lahan Pada Citra Multispectral Berdasarkan Pendekatan Codebook dan Keyblock. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 11(2), 145–155. https://doi.org/10.23887/janapati.v11i2.49102

Issue

Section

Articles