Deteksi Karakter Hiragana Menggunakan Metode Convolutional Neural Network
DOI:
https://doi.org/10.23887/janapati.v11i3.50144Keywords:
Convolutional Neural Network, Pengenalan Pola, HiraganaAbstract
Salah satu jenis huruf dasar yang digunakan dalam Bahasa Jepang ialah Hiragana. Dalam penulisan Hiragana memiliki aturan guratan dasar atau berbentuk garis – garis dan coretan melengkung (kyokusenteki), penulisan dari garis atas ke bawah atau dari kiri ke kanan. Aturan tersebut harus diikuti dan diperhatikan. Diusulkan penggunaan Metode Convolutional Neural Network (CNN) untuk melakukan pengenalan terhadap tulisan tangan karakter Hiragana. Pada tahap preprocessing, terdapat proses segmentasi yang menggunakan metode thresholding, setelah itu dilakukan proses menghilangkan noise, mengubah ukuran, dan proses normalisasi dengan cara memotong gambar dataset. Pada tahap pengujian, digunakan Metode Adam Optimizer sebagai alat untuk menguji metode yang digunakan dimana akan menghasilkan nilai akurasi. Dengan menggunakan 1000 dataset gambar yang terdiri dari 50 karakter, masing-masing karakter memiliki 20 sampel gambar. Dari 1000 data tersebut, telah dilakukan variasi data dengan melakukan split dataset. Dalam penelitian ini dilakukan 2 kali percobaan dengan variasi data 70:30 dan 60:40. Akurasi yang didapat yaitu 86,5% dan 83%.. Akurasi yang di dapat menggunakan split dataset 70:30 ternyata menghasilkan prosentase lebih tinggi di banding menggunakan split dataset 60:40.
References
S. D. Budiwati, J. Haryatno, and E. M. Dharma, “Japanese character (Kana) pattern recognition application using neural network,” in Proceedings of the 2011 International Conference on Electrical Engineering and Informatics, ICEEI 2011, 2011, no. July.
S. Das and S. Banerjee, “An Algorithm for Japanese Character Recognition,” Int. J. Image, Graph. Signal Process., vol. 7, no. 1, pp. 9–15, 2014.
Charlie Tsai, “Recognizing Handwritten Japanese Characters Using Deep Convolutional Neural Networks,” 2016.
M. Margarita Susilo, D. Martomanggolo Wonohadidjojo, and N. Sugianto, “Pengenalan Pola Karakter Bahasa Jepang Hiragana Menggunakan 2D Convolutional Neural Network,” 28 JUISI, vol. 03, no. 02, 2017.
C. A. Sari, M. W. Kuncoro, D. R. I. M. Setiadi, and E. H. Rachmawanto, “Roundness and eccentricity feature extraction for Javanese handwritten character recognition based on K-nearest neighbor,” 2018 Int. Semin. Res. Inf. Technol. Intell. Syst. ISRITI 2018, pp. 5–10, 2018.
R. Fikri, F. Arnia, and R. Muharar, “Pengenalan Karakter Tulisan Tangan Jawi Menggunakan Metode New Relative Context dan SVM,” JNTETI, vol. 5, no. 3, pp. 1–6, 2016.
A. H. Mawaddah, C. Atika Sari, D. R. Ignatius Moses Setiadi, and E. Hari Rachmawanto, “Handwriting Recognition of Hiragana Characters using Convolutional Neural Network,” in 2020 International Seminar on Application for Technology of Information and Communication (iSemantic), 2020, pp. 79–82.
R. A. Misnadin, S. A. S. Mola, and A. Fanggidae, “Pengenalan Pola Tulisan Tangan dengan Metode K-Nearest Neighbor,” J-ICON, vol. 2, no. 1, pp. 65–72, 2014.
D. L. B, H. Ma, Z. Xiong, and F. Wu, MultiMedia Modeling, vol. 10705. Cham: Springer International Publishing, 2018.
H. Shah, R. Rajasekaran, and J. Masih, “A Comparative Study of Classification Algorithms with Varying Training Dataset Sizes on Cursive Hiragana Characters,” J. Xi’an Univ. Archit. Technol., vol. XII, no. Viii, pp. 1388–1396.
J. Liu et al., “An Investigation of a Multidimensional CNN Combined with an Attention Mechanism Model to Resolve Small-Sample Problems in Hyperspectral Image Classification,” Remote Sens., vol. 14, no. 3, p. 785, Feb. 2022.
Rosalina, J. P. Hutagalung, and G. Sahuri, “Hiragana handwriting recognition using deep neural network search,” Int. J. Interact. Mob. Technol., vol. 14, no. 1, pp. 161–168, 2020.
N. E. W. Nugroho and A. Harjoko, “Transliteration of Hiragana and Katakana Handwritten Characters Using CNN-SVM,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 3, p. 221, 2021.
K. Ueki, T. Kojima, R. Mutou, R. Sayyed Nezhad, and Y. Hagiwara, “Recognition of Japanese Connected Cursive Characters Using Multiple Softmax Outputs,” Proc. - 3rd Int. Conf. Multimed. Inf. Process. Retrieval, MIPR 2020, pp. 127–130, 2020.
A. Willyanto, D. Alamsyah, and H. Irsyad, “Identifikasi Tulisan Tangan Aksara Jepang Hiragana Menggunakan Metode CNN Arsitektur VGG-16,” J. Algoritm., vol. 2, no. 1, pp. 1–11, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eko Hari Rachmawanto, Pulung Nurtantio Andono
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Janapati agree to the following terms:- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)