Sentiment Analysis of Online Lectures using K-Nearest Neighbors based on Feature Selection
DOI:
https://doi.org/10.23887/janapati.v11i3.51531Keywords:
Online lectures, Sentiment analysis, K-NN, Feature Selection, tweetsAbstract
Online lecture is a distance learning system that utilizes information technology in its implementation. Although it has been agreed, this lecture system has caused controversy. Not infrequently online lectures are considered to bring a variety of new obstacles in lectures, and not a few also consider that online lectures are the most appropriate solution to continue to run lecture activities in the midst of alarming pandemic conditions. In response to this policy, many people expressed various kinds of opinions and views on the implementation of online lectures which are generally stated on social media, one of which is through Twitter. Sentiment analysis is a branch of the science of machine learning that is carried out to obtain useful information or new knowledge by extracting, understanding, and processing text data automatically. Several methods are widely used by researchers to classify sentiment analysis datasets including K-Nearest Neighbor (K-NN). K-NN will be adapted to classify online lecture datasets because K-NN can produce good accuracy on a large number of data. The presence of feature selection also helps machine learning in improving its performance. The purpose of this study was to determine student sentiment toward online lectures and to determine the level of accuracy of the combination of K-NN with various feature selections. Based on 780 tweets data, a classification of 394 positive sentiments, 320 negative sentiments, and 39 neutral sentiments was obtained. So, the results of student opinions are on POSITIVE sentiments. The accuracy result of the K-NN Algorithm was 56% and the accuracy of the K-NN Algorithm + Forward Selection was 51%, the accuracy of the KNN Algorithm + Adabost was 54%, and the accuracy of the KNN Algorithm + Genetic Algorithm was 55%.
References
O. I. Handarini and S. S. Wulandari, “Pembelajaran Daring Sebagai Upaya Study From Home (SFH) Selama Pandemi Covid 19,” Jurnal Pendidikan Administrasi Perkantoran (JPAP), vol. 8, no. 3, pp. 496–503, 2020, doi: 10.26740/jpap.v8n3.p496-503.
H. A. Maulana and M. Hamidi, “Persepsi Mahasiswa terhadap Pembelajaran Daring pada Mata Kuliah Praktik di Pendidikan Vokasi,” Equilibrium: Jurnal Pendidikan, vol. 8, no. 2, pp. 224–231, 2020, doi: 10.26618/equilibrium.v8i2.3443.
S. R. I. Rezeki, “Penggunaan Sosial Media Twitter dalam Komunikasi Organisasi (Studi Kasus Pemerintah Provinsi Dki Jakarta Dalam Penanganan Covid-19),” Journal of Islamic and Law Studies, vol. 04, no. 02, pp. 63–78, 2020.
K. Curran, K. O’Hara, and S. O’Brien, “The role of twitter in the world of business,” International Journal of Business Data Communications and Networking, vol. 7, no. 3, pp. 1–15, 2011, doi: 10.4018/jbdcn.2011070101.
S. Sendari, I. A. E. Zaeni, D. C. Lestari, and H. P. Hariyadi, “Opinion Analysis for Emotional Classification on Emoji Tweets using the Naïve Bayes Algorithm,” Knowledge Engineering and Data Science, vol. 3, no. 1, pp. 50–59, 2020, doi: 10.17977/um018v3i12020p50-59.
M. K. Anam, “Analisis Respons Netizen Terhadap Berita Politik Di Media Online,” Jurnal Ilmiah Ilmu Komputer, vol. 3, no. 1, pp. 14–21, 2017, doi: 10.35329/jiik.v3i1.62.
M. K. Anam, M. I. Mahendra, W. Agustin, Rahmaddeni, and Nurjayadi, “Framework for Analyzing Netizen Opinions on BPJS Using Sentiment Analysis and Social Network Analysis (SNA),” Intensif, vol. 6, no. 1, pp. 2549–6824, 2022, doi: 10.29407/intensif.v6i1.15870.
M. K. Anam, B. Nanti, P. Gulo, M. B. Firdaus, and S. Erlinda, “Penerapan Naïve Bayes Classifier , K-Nearest Neighbor dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen dan Pemeritah Applications of Naïve Bayes Classifier , K-Nearest Neighbor and Decision Tree to Analyze Sentiment on Netizen and Gove,” Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, vol. 21, no. 1, pp. 139–150, 2021, doi: 10.30812/matrik.v21i1.1092.
A. P. Natasuwarna, “Analisis Sentimen Keputusan Pemindahan Ibukota Negara Menggunakan Klasifikasi Naive Bayes,” Seminar Nasional Sistem Informasi dan Teknik Informatika, pp. 47–53, 2019.
D. Cahyanti, A. Rahmayani, and S. A. Husniar, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indonesian Journal of Data and Science, vol. 1, no. 2, pp. 39–43, 2020, doi: 10.33096/ijodas.v1i2.13.
R. Sanjaya and F. Fitriyani, “Prediksi Bedah Toraks Menggunakan Seleksi Fitur Forward Selection dan K-Nearest Neighbor,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 5, no. 3, p. 316, 2019, doi: 10.26418/jp.v5i3.35324.
R. Yunus, U. Ulfa, and M. D. Safitri, “Application of the K-Nearest Neighbors (K-NN) Algorithm for Classification of Heart Failure,” Journal of Applied Intelligent System, vol. 6, no. 1, pp. 1–9, 2021, doi: 10.33633/jais.v6i1.4513.
Tanti and P. Sirait, “Optimalisasi Kinerja Klasifikasi Melalui Seleksi Fitur dan AdaBoost dalam Penanganan Ketidakseimbangan Kelas,” vol. 5, pp. 1377–1385, 2021, doi: 10.30865/mib.v5i4.3280.
S. Mulyati, Y. Yulianti, and A. Saifudin, “Penerapan Resampling dan Adaboost untuk Penanganan Masalah Ketidakseimbangan Kelas Berbasis Naϊve Bayes pada Prediksi Churn Pelanggan,” Jurnal Informatika Universitas Pamulang, vol. 2, no. 4, p. 190, 2017, doi: 10.32493/informatika.v2i4.1440.
M. R. Fanani, “Penggabungan Forward Selection untuk Pemilihan Fitur pada Prediksi Bimbingan Konseling Siswa dengan Menggunakan Algoritma Naive Bayes,” Smart Comp :Jurnalnya Orang Pintar Komputer, vol. 9, no. 2, pp. 85–88, 2020, doi: 10.30591/smartcomp.v9i2.1924.
S. F. Pane, R. Maulana Awangga, E. V. Rahcmadani, and S. Permana, “Implementasi Algoritma Genetika Untuk Optimalisasi Pelayanan Kependudukan,” Jurnal Tekno Insentif, vol. 13, no. 2, pp. 36–43, 2019, doi: 10.36787/jti.v13i2.130.
E. S. Wahyuni, “Penerapan Metode Seleksi Fitur Untuk Meningkatkan Hasil Diagnosis Kanker Payudara,” Simetris : Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 7, no. 1, p. 283, 2016, doi: 10.24176/simet.v7i1.516.
I. Santoso, Windu Gata, and Atik Budi Paryanti, “Penggunaan Feature Selection di Algoritma Support Vector Machine untuk Sentimen Analisis Komisi Pemilihan Umum,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 3, no. 3, pp. 364–370, 2019, doi: 10.29207/resti.v3i3.1084.
M. Dennis, R. Rahmaddeni, F. Zoromi, and M. K. Anam, “Penerapan Algoritma Naïve Bayes Untuk Pengelompokkan Predikat Peserta Uji Kemahiran Berbahasa Indonesia,” Jurnal Media Informatika Budidarma, vol. 6, no. 2, pp. 1183–1190, Apr. 2022, doi: 10.30865/mib.v6i2.3956.
B. N. Pikir, M. K. Anam, H. Asnal, Rahmaddeni, and T. A. Fitri, “Sentiment Analysis of Technology Utilization by Pekanbaru City Government Based on Community Interaction in Social Media,” JAIA – Journal Of Artificial Intelligence And Applications, vol. 2, no. 1, pp. 32–40, 2021.
A. F. Hidayatullah and M. R. Ma’arif, “Pre-processing Tasks in Indonesian Twitter Messages,” in Journal of Physics: Conference Series, 2017. doi: 10.1088/1742-6596/755/1/011001.
E. S. Romaito, M. K. Anam, Rahmaddeni, and A. N. Ulfah, “Perbandingan Algoritma SVM Dan NBC Dalam Analisa Sentimen Pilkada Pada Twitter,” CSRID Journal, vol. 13, no. 3, pp. 169–179, 2021, doi: 10.22303/csrid.13.3.2021.169-179.
M. K. Anam, Rahmaddeni, M. B. Firdaus, H. Asnal, and Hamdani, “Sentiment Analysis to analyze Vaccine Enthusiasm in Indonesia on Twitter Social Media,” JAIA – Journal Of Artificial Intelligence And Applications, vol. 1, no. 2, pp. 23–27, 2021.
P. WiraBuana, S. Jannet D.R.M., and I. Ketut Gede Darma Putra, “Combination of K-Nearest Neighbor and K-Means based on Term Re-weighting for Classify Indonesian News,” Int J Comput Appl, vol. 50, no. 11, pp. 37–42, 2012, doi: 10.5120/7817-1105.
R. Rahmiati, D. Irfan, A. Agustin, and S. Hediyati, “Aplikasi Pengukur Tingkat Sentimen Pelanggan Berdasarkan Komplain Pelanggan Pln Menggunakan Algoritma K-Nearest Neighbor,” INOVTEK Polbeng - Seri Informatika, vol. 5, no. 2, p. 332, 2020, doi: 10.35314/isi.v5i2.1467.
A. N. Ulfah and M. K. Anam, “Analisis Sentimen Hate Speech Pada Portal Berita Online Menggunakan Support Vector Machine (SVM),” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 7, no. 1, pp. 1–10, 2020, doi: 10.35957/jatisi.v7i1.196.
A. A. Maarif, “Penerapan Algoritma TF-IDF untuk Pencarian Karya Ilmiah,” Dokumen Karya Ilmiah | Tugas Akhir | Program Studi Teknik Informatika - S1 | Fakultas Ilmu Komputer | Universitas Dian Nuswantoro Semarang, no. 5, p. 4, 2015.
A. Pamuji, “Performance of the K-Nearest Neighbors Method on Analysis of Social Media Sentiment,” Juisi, vol. 07, no. 01, pp. 32–37, 2021.
Okfalisa, I. Gazalba, Mustakim, and N. G. I. Reza, “Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification,” in Proceedings - 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering, ICITISEE 2017, 2018, vol. 2018-Janua, pp. 294–298. doi: 10.1109/ICITISEE.2017.8285514.
S. Kumar and I. Chong, “Correlation analysis to identify the effective data in machine learning: Prediction of depressive disorder and emotion states,” Int J Environ Res Public Health, vol. 15, no. 12, 2018, doi: 10.3390/ijerph15122907.
G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Computers and Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014, doi: 10.1016/j.compeleceng.2013.11.024.
A. Rakhman and M. Rifqi Tsani, “Analisis Sentimen Review Media Massa Menggunakan Metode C4.5 Berbasis Forward Selection,” Smart Comp, vol. 8, no. 2, pp. 78–82, 2019, doi: 10.30591/smartcomp.v8i2.1491.
R. Wati, “Penerapan Algoritma Genetika Untuk Seleksi Fitur Pada Analisis Sentimen Review Jasa Maskapai Penerbangan,” Jurnal Evolusi, vol. 4, no. 1, pp. 25–31, 2016.
A. Andreyestha and A. Subekti, “Analisa Sentiment Pada Ulasan Film Dengan Optimasi Ensemble Learning,” Jurnal Informatika, vol. 7, no. 1, pp. 15–23, 2020, doi: 10.31311/ji.v7i1.6171.
A. R. Isnain, J. Supriyanto, and M. P. Kharisma, “Implementation of K-Nearest Neighbor (K-NN) Algorithm For Public Sentiment Analysis of Online Learning,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 2, p. 121, Apr. 2021, doi: 10.22146/ijccs.65176.
M. Furqan, S. Mayang Sari, and P. Ilmu Komputer Fakultas Sains dan Teknologi, “Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia Sentiment Analysis using K-Nearest Neighbor towards the New Normal During the Covid-19 Period in Indonesia,” 2022. [Online]. Available: www.tripadvisor.com
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Junadhi, Agustin, Mi’rajul Rifqi, M. Khairul Anam
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Janapati agree to the following terms:- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)