Modifikasi Fruit Fly Optimiziation Algorithm untuk Optimasi General Regression Neural Network pada Kasus Prediksi Time-Series
DOI:
https://doi.org/10.23887/janapati.v11i3.54521Keywords:
Optimasi, GRNN, FOA, immune algorithmAbstract
FOA merupakan algoritma optimasi swarm intelligence yang dikenal unggul dan cenderung sederhana untuk diimplementasikan, namun algoritma ini diketahui sulit untuk memecahkan masalah optimasi nonlinier berdimensi tinggi dan mudah jatuh ke dalam optimum lokal. Untuk mengatasi kekurangan ini, immune algorithm digunakan untuk menyeimbangkan kekurangan FOA guna meningkatkan efisiensi pencarian. Penelitian ini bertujuan untuk menggabungkan algoritma optimasi FOA dengan immune algorithm untuk digunakan mengoptimasikan model prediksi GRNN. Model hybrid dari GRNN dan FOA modifikasi (IAFOA) akan diuji-coba terhadap beberapa dataset time-series di berbagai domain. Performanya dibandingkan dengan model FOA basic untuk melihat dampak jelas dari proses modifikasi tersebut terhadap performa model GRNN dalam melakukan prediksi. Hasil pengujian menunjukkan bahwa eror prediksi RMSE dan MAE dari IAFOA A pada 4 kasus training dan testing dan 1 kasus lebih unggul pada proses training. Berdasarkan pengujian yang dilakukan kepada 3 dataset (6 kasus), IAFOA menghasilkan rata-rata eror prediksi lebih kecil yaitu RMSE sebesar 35348.63 dan MAE 26699.02 dibandingkan FOA dengan rata-rata eror prediksi secara berturut-turut 35792.59 dan 26967.12.
References
X. S. Yang, “Swarm intelligence based algorithms: A critical analysis,” Evol. Intell., vol. 7, no. 1, pp. 17–28, 2014, doi: 10.1007/s12065-013-0102-2.
X. Guo, J. Zhang, W. Li, and Y. Zhang, “A fruit fly optimization algorithm with a traction mechanism and its applications,” Int. J. Distrib. Sens. Networks, vol. 13, no. 11, 2017, doi: 10.1177/1550147717739831.
W. Pan, “Knowledge-Based Systems A new Fruit Fly Optimization Algorithm : Taking the financial distress model as an example,” Knowledge-Based Syst., vol. 26, pp. 69–74, 2012, doi: 10.1016/j.knosys.2011.07.001.
Y. Li and M. Han, “Improved fruit fly algorithm on structural optimization,” Brain Informatics, vol. 7, no. 1, pp. 1–13, 2020, doi: 10.1186/s40708-020-0102-9.
Y. Liu, J. J. Sun, and X. Wang, “Research on Multi-Distribution Center Location Based on Fruit Fly – Immune Algorithm,” Appl. Mech. Mater., vol. 743, pp. 338–342, 2015, doi: 10.4028/www.scientific.net/amm.743.338.
D. Chen, S. Li, J. Wang, Y. Feng, and Y. Liu, “A multi-objective trajectory planning method based on the improved immune clonal selection algorithm,” Robot. Comput. Integr. Manuf., vol. 59, pp. 431–442, 2019, doi: https://doi.org/10.1016/j.rcim.2019.04.016.
Z. Yang, Y. Ding, K. Hao, and X. Cai, “An adaptive immune algorithm for service-oriented agricultural Internet of Things,” Neurocomputing, vol. 344, pp. 3–12, 2019, doi: https://doi.org/10.1016/j.neucom.2018.06.094.
J. Song and H. Pan, “PID control parameters optimize based on an immune fruit fly optimization algorithm,” Proc. 28th Chinese Control Decis. Conf. CCDC 2016, pp. 6383–6388, 2016, doi: 10.1109/CCDC.2016.7532147.
B. B. Savarala and P. R. Chella, “An improved fruit fly optimization algorithm for QoS aware cloud service composition,” Int. J. Intell. Eng. Syst., vol. 10, no. 5, pp. 105–114, 2017, doi: 10.22266/ijies2017.1031.12.
D. Corus, P. S. Oliveto, and D. Yazdani, “When hypermutations and ageing enable artificial immune systems to outperform evolutionary algorithms,” Theor. Comput. Sci., vol. 832, pp. 166–185, 2020, doi: https://doi.org/10.1016/j.tcs.2019.03.002.
M. T. Leung, A. Chen, and H. Daouk, “Forecasting Exchange Rates Using General Regression Neural networks,” Comput. Oper. Res., vol. 27, no. 11–12, pp. 1093–1110, 2000, doi: https://doi.org/10.1016/S0305-0548(99)00144-6.
Adnyani and Subanar, “General Regression Nerve Network (GRNN) Forecasting Dollar Exchange Rate and Composite Stock Price Index (CSPI),” Factor Exacta, vol. 8, pp. 137–144, 2015.
R. E. Caraka, H. Yasin, and A. Prahutama, “Modeling of General Regression Neural Network (GRNN) on Data Return of Euro 50 Stock Price Index,” Gaussian, vol. 4, pp. 181–192, 2015.
D. Niu, H. Wang, H. Chen, and Y. Liang, “The General Regression Neural Network Based on the Fruit Fly Optimization Algorithm and the Data Inconsistency Rate for Transmission Line Icing Prediction,” Energies, vol. 10, no. 2066, 2017, doi: 10.3390/en10122066.
N. P. N. P. Dewi and R. A. Nugroho, “Optimasi General Regression Neural Network Dengan Fruit Fly Optimization Algorithm Untuk Prediksi Pemakaian Arus Listrik Pada Penyulang,” KOMPUTASI J. Ilm. Ilmu Komput. dan Mat., vol. 18, no. 1, pp. 1–12, 2021, doi: https://doi.org/10.33751/komputasi.v18i1.2144.
D. Burba, “An overview of time series forecasting models,” 2019, [Online]. Available: https://towardsdatascience.com/an-overview-of-time-series-forecasting-models-a2fa7a358fcb.
P. S. P. Cowpertwait and A. V. Metcalfe, Introduction Time Series with R. Springer, 2009.
J. Brownlee, “What Is Time Series Forecasting?,” 2020. https://machinelearningmastery.com/time-series-forecasting/.
Tableu, “Time Series Forecasting: Definition, Applications, and Examples,” 2022. https://www.tableau.com/learn/articles/time-series-forecasting#:~:text=Time series forecasting occurs when,drive future strategic decision-making.
H. Bersini and F. J. Varela, “Hints for adaptive problem solving gleaned from immune networks,” in Parallel Problem Solving from Nature, H.-P. Schwefel and R. Männer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 343–354.
A. Babalık, H. İşcan, İ. Babaoğlu, and M. Gündüz, “An improvement in fruit fly optimization algorithm by using sign parameters,” Soft Comput., vol. 22, no. 22, pp. 7587–7603, 2018, doi: 10.1007/s00500-017-2733-1.
T.-S. Du, X.-T. Ke, J.-G. Liao, and Y.-J. Shen, “DSLC-FOA : Improved fruit fly optimization algorithm for application to structural engineering design optimization problems,” Appl. Math. Model., vol. 55, pp. 314–339, 2018, doi: https://doi.org/10.1016/j.apm.2017.08.013.
G. Azamirad and B. Arezoo, “Structural design of stamping die components using bi-directional evolutionary structural optimization method,” Int. J. Adv. Manuf. Technol., vol. 87, no. 1, pp. 969–979, 2016, doi: 10.1007/s00170-016-8344-7.
D. F. Specht, “General Regression Neural Network ( GRNN ),” in General Regression Neural Network ( GRNN ), 1991, pp. 42–60.
B. Mohanty and P. Hota, “Comparative performance analysis of fruit fly optimization algorithm for multi-area multi-source automatic generation control under deregulated environment,” Gener Trans Distrib, vol. 9, no. 14, pp. 1845–1855, 2015, doi: https ://doi.org/10.1049/iet-gtd.2015.0284.
Fedesoriano, “Wind Speed Prediction Dataset,” 2022. https://www.kaggle.com/datasets/fedesoriano/wind-speed-prediction-dataset.
Q. Al-Btoush, “Wind Energy in Germany,” 2022. https://www.kaggle.com/code/qusaybtoush1990/wind-energy-in-germany/data.
Sumanthvrao, “Daily Climate time series data,” 2022. https://www.kaggle.com/datasets/sumanthvrao/daily-climate-time-series-data.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ni Putu Novita Puspa Dewi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Janapati agree to the following terms:- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)