Comparison Performance of K-Medoids and K-Means Algorithms In Clustering Community Education Levels

Authors

  • Diana Dwi Aulia Universitas Darwan Ali
  • Nurahman Nurahman Universitas Darwan Ali

DOI:

https://doi.org/10.23887/janapati.v12i2.59789

Keywords:

Education, Data Mining, Clustering, K-Means, K-Medoids

Abstract

Education is a mandatory right of all citizens and the key to the nation's superiority in global competition that must get top priority to be examined critically and comprehensively. It is known that compulsory education is at least 12 years, but not all people can do it because of minimal economic conditions. In past years, COVID-19 has also had an impact on the economy, school dropout rates, and falling academic achievement, for example in Central Kalimantan. The size of Central Kalimantan, however, makes it difficult for the government to identify the areas with the worst levels of education. To determine which regions fall into the low and high education categories, it is required to group the province's educational levels. This study also compares two algorithms by measuring their accuracy. By looking at which algorithm has the lowest Davies Bouldin Index (DBI) value, the best degree of performance can be ascertained. To process the data from as many as 1,565 sources, data mining techniques, including the clustering method, were used. K-Means and K-Medoids algorithms were employed in this work as clustering techniques. Based on the outcomes of the cluster created, both algorithms are also put to the test for performance. The results of this study obtained 6 clusters in K-Means with the lowest DBI value of -0.439, while the results in K-Medoids were in 3 clusters with the lowest DBI of -0.866. Based on accuracy testing using DBI, it is known that K-Means results are more optimal with the lowest DBI value in the grouping of education levels compared to K-Medoids. It is also known from the formation of 6 clusters of the K-Means algorithm that the low education level is in cluster_0 which is 1484 villages and the higher education level is as many as 3 villages in cluster_3.

References

N. Nurahman, A. Purwanto, and S. Mulyanto, “Klasterisasi Sekolah Menggunakan Algoritma K-Means berdasarkan Fasilitas, Pendidik, dan Tenaga Pendidik,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 2, pp. 337–350, 2022, doi: 10.30812/matrik.v21i2.1411.

A. S. M. Noor, M. Younas, and M. Arshad, “A review on cloud based knowledge management in higher education institutions,” Int. J. Electr. Comput. Eng., vol. 9, no. 6, 2019, doi: 10.11591/ijece.v9i6.pp5420-5427.

S. Hendrian, “Algoritma Klasifikasi Data Mining Untuk Memprediksi Siswa Dalam Memperoleh Bantuan Dana Pendidikan,” Fakt. Exacta, vol. 11, no. 3, pp. 266–274, 2018, doi: 10.30998/faktorexacta.v11i3.2777.

A. Akram et al., “Comparative review on information and communication technology issues in education sector of developed and developing countries: A case study about pakistan,” Bull. Electr. Eng. Informatics, vol. 10, no. 6, 2021, doi: 10.11591/eei.v10i6.3245.

E. Horne, H. Tibble, A. Sheikh, and A. Tsanas, “Challenges of clustering multimodal clinical data: Review of applications in asthma subtyping,” JMIR Medical Informatics, vol. 8, no. 5. 2020. doi: 10.2196/16452.

A. Hermawati, S. Jumini, M. Astuti, F. Ismail, and R. Rahim, “Unsupervised Data Mining with K-Medoids Method in Mapping Areas of Student and Teacher Ratio in Indonesia,” TEM J., vol. 9, no. 4, 2020, doi: 10.18421/TEM94-37.

F. Farahdinna, I. Nurdiansyah, A. Suryani, and A. Wibowo, “PERBANDINGAN ALGORITMA K-MEANS DAN K-MEDOIDS DALAM KLASTERISASI PRODUK ASURANSI PERUSAHAAN NASIONAL,” J. Ilm. FIFO, vol. 11, no. 2, 2019, doi: 10.22441/fifo.2019.v11i2.010.

A. Supriyadi, A. Triayudi, and I. D. Sholihati, “PERBANDINGAN ALGORITMA K-MEANS DENGAN K-MEDOIDS PADA PENGELOMPOKAN ARMADA KENDARAAN TRUK BERDASARKAN PRODUKTIVITAS,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 2, 2021, doi: 10.29100/jipi.v6i2.2008.

R. Ananda, A. R. Dewi, and N. Nurlaili, “A COMPARISON OF CLUSTERING BY IMPUTATION AND SPECIAL CLUSTERING ALGORITHMS ON THE REAL INCOMPLETE DATA,” J. Ilmu Komput. dan Inf., vol. 13, no. 2, 2020, doi: 10.21609/jiki.v13i2.818.

T. Hardiani, “ANALISIS CLUSTERING KASUS COVID 19 DI INDONESIA MENGGUNAKAN ALGORITMA K-MEANS Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 157,” vol. 11, pp. 156–165, 2022.

K. Khomsatun, D. Ikhsan, M. Ali, and K. Kursini, “SISTEM PENGAMBILAN KEPUTUSAN PEMILIHAN LAHAN TANAM DI KABUPATEN WONOSOBO DENGAN K-MEANS CLUSTERING DAN TOPSIS,” J. Nas. Pendidik. Tek. Inform., vol. 9, no. 1, 2020, doi: 10.23887/janapati.v9i1.23073.

M. Minarni, E. I. Sari, A. Syahrani, and P. Mandarani, “Klasterisasi Penyakit Menggunakan Algoritma K-Medoids pada Dinas Kesehatan Kabupaten Agam Provinsi Sumatra Barat Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI,” J. Nas. Pendidik. Tek. Inform., vol. 10, no. 3, 2021, doi: 10.23887/janapati.v10i3.34904.

S. Ramadhani, D. Azzahra, and T. Z, “Comparison of K-Means and K-Medoids Algorithms in Text Mining based on Davies Bouldin Index Testing for Classification of Student’s Thesis,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 13, no. 1, pp. 24–33, 2022, doi: 10.31849/digitalzone.v13i1.9292.

N. Dwi Aulia, Diana; Nurhaman, “Klasterisasi Pendidikan Masyarakat untuk mengetahui Daerah dengan Pendidikan Terendah menggunakan Algoritma K-Means,” vol. 5, no. 1, pp. 38–44, 2023.

R. Kurniawan, M. M. M. Mukarrobin, and M. Mahradianur, “Klasterisasi Tingkat Pendidikan Di Dki Jakarta Pada Tingkat Kecamatan Menggunakan Algoritma K-Means,” Technol. J. Ilm., vol. 12, no. 4, p. 234, 2021, doi: 10.31602/tji.v12i4.5633.

W. Utomo, “The comparison of k-means and k-medoids algorithms for clustering the spread of the covid-19 outbreak in Indonesia,” Ilk. J. Ilm., vol. 13, no. 1, 2021, doi: 10.33096/ilkom.v13i1.763.31-35.

R. A. Malik, S. Defit, and Y. Yuhandri, “Comparison of K-Means Clustering Algorithm with Fuzzy C-Means In Measuring Satisfaction Level Of Television Da’wah Surau TV,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 3, no. 1, 2018, doi: 10.36341/rabit.v3i1.387.

K. Ariasa, I. G. A. Gunadi, and I. M. Candiasa, “Optimasi Algoritma Klaster Dinamis pada K-Means dalam Pengelompokkan Kinerja Akademik Mahasiswa (Studi Kasus: Universitas Pendidikan Ganesha),” J. Nas. Pendidik. Tek. Inform. JANAPATI, vol. 9, no. 2, 2020.

N. Qona’ah, A. R. Devi, and I. M. G. M. Dana, “Laboratory Clustering using K-Means, K-Medoids, and Model-Based Clustering,” Indones. J. Appl. Stat., vol. 3, no. 1, 2020, doi: 10.13057/ijas.v3i1.40823.

C. Oktarina, K. A. Notodiputro, and I. Indahwati, “COMPARISON OF K-MEANS CLUSTERING METHOD AND K-MEDOIDS ON TWITTER DATA,” Indones. J. Stat. Its Appl., vol. 4, no. 1, 2020, doi: 10.29244/ijsa.v4i1.599.

E. Muningsih, I. Maryani, and V. R. Handayani, “Penerapan Metode K-Means dan Optimasi Jumlah Cluster dengan Index Davies Bouldin untuk Clustering Propinsi Berdasarkan Potensi Desa,” J. Sains dan Manaj., vol. 9, no. 1, 2021.

Y. A. Wijaya, D. A. Kurniady, E. Setyanto, W. S. Tarihoran, D. Rusmana, and R. Rahim, “Davies Bouldin Index Algorithm for Optimizing Clustering Case Studies Mapping School Facilities,” TEM J., vol. 10, no. 3, 2021, doi: 10.18421/TEM103-13.

N. R. Shamsuddin and N. I. Mahat, “Comparison Between k-Means and k-Medoids for Mixed Variables Clustering,” in Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017), 2019. doi: 10.1007/978-981-13-7279-7_37.

Downloads

Published

2023-07-31

How to Cite

Dwi Aulia, D., & Nurahman, N. (2023). Comparison Performance of K-Medoids and K-Means Algorithms In Clustering Community Education Levels. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 12(2), 273–282. https://doi.org/10.23887/janapati.v12i2.59789

Issue

Section

Articles