SARIMA with Sliding Window Implementation for Forecasting Seasonal Demand Data

Authors

  • Made Rama Pradipta Universitas Udayana
  • Gusti Made Arya Sasmita
  • Anak Agung Ngurah Hary Susila

DOI:

https://doi.org/10.23887/janapati.v13i1.59971

Keywords:

Forecasting, SARIMA, Decomposition, Windowing, Seasonal, Demand

Abstract

Demand forecasting is an essential part of business process management. A comparison of methods is needed to get the best model to provide good forecasting results. Difficulties in meeting consumer demands and predicting these requests using demand data at companies CV. ABCD is the main problem in this research. The SARIMA and decomposition methods are used for comparison and search for the best model before forecasting. SARIMA  with a windowing size of 56, indicating the smallest MAPE value of 3,91%. The value <10%, so it can be said to produce an excellent forecasting value. Forecasting results with SARIMA  show a meeting between actual and forecasting data in 2022. Therefore, it can be said the forecasting results for 2023 and 2024 can be used as a reference for the company CV. ABCD to meet customer demand and avoid stock shortages.

References

G. Merkuryeva, A. Valberga, and A. Smirnov, “Demand forecasting in pharmaceutical supply chains: A case study,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 3–10. doi: 10.1016/j.procs.2019.01.100.

D. Yuni, “Perbandingan Metode Exponential Smoothing dan Metode Decomposition Untuk Meramalkan Persediaan Beras (Studi Kasus Divre Bulog Lhokseumawe ),” Jurnal Visioner & Strategis, vol. 10, no. 1, 2021.

B. G. Prianda and E. Widodo, “PERBANDINGAN METODE SEASONAL ARIMA DAN EXTREME LEARNING MACHINE PADA PERAMALAN JUMLAH WISATAWAN MANCANEGARA KE BALI,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 4, pp. 639–650, Dec. 2021, doi: 10.30598/barekengvol15iss4pp639-650.

L. Parviz, “Comparative Evaluation of Hybrid SARIMA and Machine Learning Techniques Based on Time Varying and Decomposition of Precipitation Time Series,” 2020.

G. Idfi, A. Yulistyorini, T. Rahayuningsih, V. A. K. Dewi, and E. Setyawan, “The forecasting model of discharge at Brantas sub-basin using autoregressive integrated moving average (ARIMA) and decomposition methods,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Sep. 2021. doi: 10.1088/1755-1315/847/1/012029.

Ni Kadek Ary Indah Suryani, Oka Sudana, and Ayu Wirdiani, “Forecasting Pneumonia Toddler Mortality Using Comparative Model ARIMA and Multilayer Perceptron,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 4, pp. 528–537, Aug. 2022, doi: 10.29207/resti.v6i4.4106.

I. A. Lubis and P. Korespondensi, “USULAN PERENCANAAN SAFETY STOCK & FORECASTING DEMAND DENGAN METODE TIME SERIES PRODUKSI KERAN AIR DI PT KAYU PERKASA RAYA.” [Online]. Available: www.bps.go.id,

E. Fitriastutik and M. Anityasari, “Forecasting Timbulan Sampah Kota Surabaya Menggunakan Time Series Analysis,” Jurnal Teknik ITS, vol. 9, no. 2, Feb. 2021, doi: 10.12962/j23373539.v9i2.56557.

K. M. U. B. Konarasinghe, “Forecasting Foreign Guest Nights in Hill Country of Sri Lanka,” Review of Integrative Business and Economics Research, vol. 7, p. 41, 2018, [Online]. Available: https://www.researchgate.net/publication/342503004

A. Rizki, G. Baskoro, and I. Mariza, “Supply and Demand Analysis by using Comparison of Forecasting Method in Motorcycles Tires Manufacturer,” Conference on Management and Engineering in Industry (CMEI), 2021.

P. Kromkowski, S. Li, W. Zhao, B. Abraham, A. Osborne, and D. E. Brown, “Evaluating Statistical Models for Network Traffic Anomaly Detection,” 2019.

H. Dong, X. Guo, H. Reichgelt, and R. Hu, “Predictive power of ARIMA models in forecasting equity returns: a sliding window method,” Journal of Asset Management, vol. 21, no. 6, pp. 549–566, Oct. 2020, doi: 10.1057/s41260-020-00184-z.

P. Manigandan et al., “Forecasting natural gas production and consumption in united states-evidence from sarima and sarimax models,” Energies (Basel), vol. 14, no. 19, Oct. 2021, doi: 10.3390/en14196021.

L. Martínez-Acosta, J. P. Medrano-Barboza, Á. López-Ramos, J. F. R. López, and Á. A. López-Lambraño, “SARIMA approach to generating synthetic monthly rainfall in the Sinú river watershed in Colombia,” Atmosphere (Basel), vol. 11, no. 6, Jun. 2020, doi: 10.3390/atmos11060602.

A. Syarif, “Forecasting the Development of Islamic Bank in Indonesia: Adopting ARIMA Model,” JTAM (Jurnal Teori dan Aplikasi Matematika), vol. 4, no. 2, p. 190, Oct. 2020, doi: 10.31764/jtam.v4i2.2790.

L. Louisa, R. Fauzi, and E. Setiawan Nugraha, “Forecasting of Retirement Insurance Filled via Internet by ARIMA Models,” 2022.

T. I. Aulia and A. Atiqi Rohmawati, “Prediksi Nilai Ekstrem Jumlah Kasus Harian Positif COVID-19 di Provinsi Jawa Timur dengan Model Vector Autoregressive Moving Average (VARMA).” [Online]. Available: https://kawalcovid19.id/.

T. M. Wanjuki, A. Wagala, and D. K. Muriithi, “Evaluating the Predictive Ability of Seasonal Autoregressive Integrated Moving Average (SARIMA) Models using Food and Beverages Price Index in Kenya,” European Journal of Mathematics and Statistics, vol. 3, no. 2, pp. 28–38, Apr. 2022, doi: 10.24018/ejmath.2022.3.2.100.

D. Wati, “PERAMALAN JUMLAH PENUMPANG KEBERANGKATAN BUS DI TERMINAL PURABAYA MENGGUNAKAN METODE SARIMA (SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE),” Surabaya, 2020.

S. A. M. Tayib, S. R. M. Nor, and S. M. Norrulashikin, “Forecasting on the crude palm oil production in Malaysia using SARIMA Model,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Aug. 2021. doi: 10.1088/1742-6596/1988/1/012106.

R. A. Permana and D. Ikasari, “UJI NORMALITAS DATA MENGGUNAKAN METODE EMPIRICAL DISTRIBUTION FUNCTION DENGAN MEMANFAATKAN MATLAB DAN MINITAB 19,” 2023.

W. G. S. Konarasinghe, “Comparison of Forecasting ability of Sama Circular Model, ARIMA and Decomposition Techniques,” 2020, [Online]. Available: www.imathm.edu.lk/publications

R. E. Wahyuni, B. Provinsi, and J. Tengah, “OPTIMASI PREDIKSI INFLASI DENGAN NEURAL NETWORK PADA TAHAP WINDOWING: ADAKAH PENGARUH PERBEDAAN WINDOW SIZE?,” 2021.

Dwi Kartini, Friska Abadi, and Triando Hamonangan Saragih, “Prediksi Tinggi Permukaan Air Waduk Menggunakan Artificial Neural Network Berbasis Sliding Window,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 39–44, Feb. 2021, doi: 10.29207/resti.v5i1.2602.

N. Putu, R. Apriyanti, K. Gede, D. Putra, I. Made, and S. Putra, “Peramalan Jumlah Kecelakaan Lalu Lintas Menggunakan Metode Support Vector Regression,” 2020.

A. Otu, O. George A., O. Jude, M. Hope Ifeyinwa, and I. Andrew I., “Application of Sarima Models in Modelling and Forecasting Nigeria’s Inflation Rates,” Am J Appl Math Stat, vol. 2, no. 1, pp. 16–28, Jan. 2014, doi: 10.12691/ajams-2-1-4.

A. A. Sidora and L. Handayani, Autoregressive Integrated Moving Average (Arima) Modelling to Forecast Rainfall In Palu, vol. 1, no. 1. 2016.

Downloads

Published

2024-03-31

How to Cite

Made Rama Pradipta, Gusti Made Arya Sasmita, & Anak Agung Ngurah Hary Susila. (2024). SARIMA with Sliding Window Implementation for Forecasting Seasonal Demand Data. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 13(1), 22–32. https://doi.org/10.23887/janapati.v13i1.59971

Issue

Section

Articles