Hole Detection in Plastic Mulch Using Template Matching and Machine Learning Algorithms

Authors

  • Abdul Aziz IPB University
  • Yandra Arkeman IPB University
  • Wisnu Ananta Kusuma IPB University
  • Farohaji Kurniawan National Research and Innovation Agency

DOI:

https://doi.org/10.23887/janapati.v12i2.60628

Keywords:

Detection, Mulch, Template Matching, Machine Learning

Abstract

Mulch is a ground cover material to maintain soil moisture and temperature stability as a plant medium. Mulch also helps prevent weed growth for better plant growth. For planting with plastic mulch, farmers need to make holes in the mulch the day before planting. Precision agriculture is needed because it can obtain savings in input financing, labor, and better yields, so this research aims to identify holes in mulch based on Unmanned Aerial Vehicle images. The advantage of this research is that it can monitor each plant based on the mulch holes, and the number of holes identified can be used as a parameter to estimate the amount of crop production. This research combines Template Matching Algorithm and Machine Learning Algorithm to improve accuracy in predicting holes in mulch. Three machine learning algorithms are used, namely the Random Forest, Support Vector Machine, and XGBoost. The data used is an orthophoto mosaic from aerial photographs. Nine areas were taken from orthophotos to be used as research samples. The results of this study obtained the highest average recall, precision, and f-measure values using the Support Vector Machine algorithm with a recall value of 87.7%, precision of 97.5%, and f-score of 92.3%. This research focuses on reducing detected commission errors. Therefore, omission errors were still detected in the damaged or leaf-covered holes.

References

U. Sudjianto and V. Krestiani, “Studi pemulsaan dan dosis NPK pada hasil buah melon (Cucumis melo L),” J. Sains dan Teknol., vol. 2, no. 2, pp. 1–7, 2009.

M. Taufik, “Analisis pendapatan usaha tani dan penanganan pascapanen cabai merah,” J. Litbang Pertan., vol. 30, no. 2, p. 2011, 2011.

J. Pitono and others, “Pertanian presisi dalam budidaya lada the precision farming on pepper cultivation,” 2020.

A. Fadillah, “Aplikasi Sistem Monitoring Pertanian Presisi Menggunakan Metode Recurrent Neural Network Berbasis Internet Of Thing,” Universitas Komputer Indonesia, 2020.

M. E. Tjahjadi, A. Yulianandha, F. Arafah, and others, “ANALISIS KEMAMPUAN ECOGNITION DALAM DETEKSI OBJEK,” Pros. SEMSINA, pp. 29–32, 2020.

R. S. Bahri and I. Maliki, “Perbandingan algoritma template matching dan feature extraction pada optical character recognition,” Tek. Inform., vol. 1, 2012.

M. S. Asih and H. Medan, “Pengenalan Huruf Pada Citra Digital Menggunakan Algoritma Template Matching,” Medan Sekol. Tinggi Tek. Harapan, 2017.

S. N. H. S. Hanapi, S. A. A. Shukor, and J. Johari, “Normalized Cross Correlation Template Matching for Oil Palm Tree Counting from UAV image,” in Journal of Physics: Conference Series, 2021, vol. 2107, no. 1, p. 12036.

S. A. Hashim, S. Daliman, I. N. M. Rodi, N. Abd Aziz, N. A. Amaludin, and A. E. Rak, “Analysis of Oil Palm Tree Recognition using Drone-Based Remote Sensing Images,” in IOP Conference Series: Earth and Environmental Science, 2020, vol. 596, no. 1, p. 12070.

A. Aeberli, K. Johansen, A. Robson, D. W. Lamb, and S. Phinn, “Detection of Banana Plants Using Multi-Temporal Multispectral UAV Imagery,” Remote Sens., vol. 13, no. 11, p. 2123, 2021.

H. Tao et al., “Deep learning-based dead pine tree detection from unmanned aerial vehicle images,” Int. J. Remote Sens., vol. 41, no. 21, pp. 8238–8255, 2020.

X. Liu, K. H. Ghazali, and A. A. Shah, “Sustainable Oil Palm Resource Assessment Based on an Enhanced Deep Learning Method,” Energies, vol. 15, no. 12, p. 4479, 2022.

D. Irsanti, B. Sasmito, and N. Bashit, “Kajian Pengaruh Penajaman Citra Untuk Penghitungan Jumlah Pohon Kelapa Sawit Secara Otomatis Menggunakan Foto Udara (Studi Kasus: KHG Bentayan Sumatra Selatan),” J. Geod. Undip, vol. 8, no. 1, pp. 428–434, 2019.

D. Marlina, “Klasifikasi Tutupan Lahan pada Citra Sentinel-2 Kabupaten Kuningan dengan NDVI dan Algoritme Random Forest,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 7, no. 1, pp. 41–49, 2022.

M. Rijal, A. Achmad, and others, “KLASIFIKASI PENYAKIT PERNAPASAN BERBASIS VISUALISASI SUARA MENGGUNAKAN METODE SUPPORT VECTOR MACHINE,” J. Ilm. Ilmu Komput. Fak. Ilmu Komput. Univ. Al Asyariah Mandar, vol. 8, no. 2, pp. 115–119, 2022.

R. G. Gunawan, E. S. Handika, and E. Ismanto, “Pendekatan Machine Learning Dengan Menggunakan Algoritma Xgboost (Extreme Gradient Boosting) Untuk Peningkatan Kinerja Klasifikasi Serangan Syn,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 453–463, 2022.

N. F. Azhar and S. Rochimah, “Memprediksi Waktu Memperbaiki Bug dari Laporan Bug Menggunakan Klasifikasi Random Forest,” J. Sist. dan Inform., vol. 11, no. 1, pp. 156–164, 2016.

A. S. Ritonga and E. S. Purwaningsih, “Penerapan Metode Support Vector Machine (SVM) Dalam Klasifikasi Kualitas Pengelasan Smaw (Shield Metal Arc Welding),” J. Ilm. Edutic Pendidik. dan Inform., vol. 5, no. 1, pp. 17–25, 2018.

Y. Jiang, G. Tong, H. Yin, and N. Xiong, “A pedestrian detection method based on genetic algorithm for optimize XGBoost training parameters,” IEEE Access, vol. 7, pp. 118310–118321, 2019.

I. L. Cherif and A. Kortebi, “On using extreme gradient boosting (XGBoost) machine learning algorithm for home network traffic classification,” in 2019 Wireless Days (WD), 2019, pp. 1–6.

A. Haryati and M. I. Juniaji, “ANALISIS ARAHAN KETINGGIAN BANGUNAN DI KABUPATEN BANDUNG MENGGUNAKAN METODE OVERLAY DAN SCORING,” GEOPLANART, vol. 4, no. 1, pp. 11–22, 2022.

D. A. Pouliot, D. J. King, F. W. Bell, and D. G. Pitt, “Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration,” Remote Sens. Environ., vol. 82, no. 2–3, pp. 322–334, 2002.

T. Yun et al., “Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach,” Remote Sens. Environ., vol. 256, p. 112307, 2021.

S. Allwright, “What is a good accuracy score in machine learning?,” 2022. https://stephenallwright.com/good-accuracy-score/ (accessed Oct. 07, 2022).

Downloads

Published

2023-07-31

How to Cite

Aziz, A., Arkeman, Y., Kusuma, W. A., & Kurniawan, F. (2023). Hole Detection in Plastic Mulch Using Template Matching and Machine Learning Algorithms. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 12(2), 184–195. https://doi.org/10.23887/janapati.v12i2.60628

Issue

Section

Articles