Hole Detection in Plastic Mulch Using Template Matching and Machine Learning Algorithms
DOI:
https://doi.org/10.23887/janapati.v12i2.60628Keywords:
Detection, Mulch, Template Matching, Machine LearningAbstract
Mulch is a ground cover material to maintain soil moisture and temperature stability as a plant medium. Mulch also helps prevent weed growth for better plant growth. For planting with plastic mulch, farmers need to make holes in the mulch the day before planting. Precision agriculture is needed because it can obtain savings in input financing, labor, and better yields, so this research aims to identify holes in mulch based on Unmanned Aerial Vehicle images. The advantage of this research is that it can monitor each plant based on the mulch holes, and the number of holes identified can be used as a parameter to estimate the amount of crop production. This research combines Template Matching Algorithm and Machine Learning Algorithm to improve accuracy in predicting holes in mulch. Three machine learning algorithms are used, namely the Random Forest, Support Vector Machine, and XGBoost. The data used is an orthophoto mosaic from aerial photographs. Nine areas were taken from orthophotos to be used as research samples. The results of this study obtained the highest average recall, precision, and f-measure values using the Support Vector Machine algorithm with a recall value of 87.7%, precision of 97.5%, and f-score of 92.3%. This research focuses on reducing detected commission errors. Therefore, omission errors were still detected in the damaged or leaf-covered holes.
References
U. Sudjianto and V. Krestiani, “Studi pemulsaan dan dosis NPK pada hasil buah melon (Cucumis melo L),” J. Sains dan Teknol., vol. 2, no. 2, pp. 1–7, 2009.
M. Taufik, “Analisis pendapatan usaha tani dan penanganan pascapanen cabai merah,” J. Litbang Pertan., vol. 30, no. 2, p. 2011, 2011.
J. Pitono and others, “Pertanian presisi dalam budidaya lada the precision farming on pepper cultivation,” 2020.
A. Fadillah, “Aplikasi Sistem Monitoring Pertanian Presisi Menggunakan Metode Recurrent Neural Network Berbasis Internet Of Thing,” Universitas Komputer Indonesia, 2020.
M. E. Tjahjadi, A. Yulianandha, F. Arafah, and others, “ANALISIS KEMAMPUAN ECOGNITION DALAM DETEKSI OBJEK,” Pros. SEMSINA, pp. 29–32, 2020.
R. S. Bahri and I. Maliki, “Perbandingan algoritma template matching dan feature extraction pada optical character recognition,” Tek. Inform., vol. 1, 2012.
M. S. Asih and H. Medan, “Pengenalan Huruf Pada Citra Digital Menggunakan Algoritma Template Matching,” Medan Sekol. Tinggi Tek. Harapan, 2017.
S. N. H. S. Hanapi, S. A. A. Shukor, and J. Johari, “Normalized Cross Correlation Template Matching for Oil Palm Tree Counting from UAV image,” in Journal of Physics: Conference Series, 2021, vol. 2107, no. 1, p. 12036.
S. A. Hashim, S. Daliman, I. N. M. Rodi, N. Abd Aziz, N. A. Amaludin, and A. E. Rak, “Analysis of Oil Palm Tree Recognition using Drone-Based Remote Sensing Images,” in IOP Conference Series: Earth and Environmental Science, 2020, vol. 596, no. 1, p. 12070.
A. Aeberli, K. Johansen, A. Robson, D. W. Lamb, and S. Phinn, “Detection of Banana Plants Using Multi-Temporal Multispectral UAV Imagery,” Remote Sens., vol. 13, no. 11, p. 2123, 2021.
H. Tao et al., “Deep learning-based dead pine tree detection from unmanned aerial vehicle images,” Int. J. Remote Sens., vol. 41, no. 21, pp. 8238–8255, 2020.
X. Liu, K. H. Ghazali, and A. A. Shah, “Sustainable Oil Palm Resource Assessment Based on an Enhanced Deep Learning Method,” Energies, vol. 15, no. 12, p. 4479, 2022.
D. Irsanti, B. Sasmito, and N. Bashit, “Kajian Pengaruh Penajaman Citra Untuk Penghitungan Jumlah Pohon Kelapa Sawit Secara Otomatis Menggunakan Foto Udara (Studi Kasus: KHG Bentayan Sumatra Selatan),” J. Geod. Undip, vol. 8, no. 1, pp. 428–434, 2019.
D. Marlina, “Klasifikasi Tutupan Lahan pada Citra Sentinel-2 Kabupaten Kuningan dengan NDVI dan Algoritme Random Forest,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 7, no. 1, pp. 41–49, 2022.
M. Rijal, A. Achmad, and others, “KLASIFIKASI PENYAKIT PERNAPASAN BERBASIS VISUALISASI SUARA MENGGUNAKAN METODE SUPPORT VECTOR MACHINE,” J. Ilm. Ilmu Komput. Fak. Ilmu Komput. Univ. Al Asyariah Mandar, vol. 8, no. 2, pp. 115–119, 2022.
R. G. Gunawan, E. S. Handika, and E. Ismanto, “Pendekatan Machine Learning Dengan Menggunakan Algoritma Xgboost (Extreme Gradient Boosting) Untuk Peningkatan Kinerja Klasifikasi Serangan Syn,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 453–463, 2022.
N. F. Azhar and S. Rochimah, “Memprediksi Waktu Memperbaiki Bug dari Laporan Bug Menggunakan Klasifikasi Random Forest,” J. Sist. dan Inform., vol. 11, no. 1, pp. 156–164, 2016.
A. S. Ritonga and E. S. Purwaningsih, “Penerapan Metode Support Vector Machine (SVM) Dalam Klasifikasi Kualitas Pengelasan Smaw (Shield Metal Arc Welding),” J. Ilm. Edutic Pendidik. dan Inform., vol. 5, no. 1, pp. 17–25, 2018.
Y. Jiang, G. Tong, H. Yin, and N. Xiong, “A pedestrian detection method based on genetic algorithm for optimize XGBoost training parameters,” IEEE Access, vol. 7, pp. 118310–118321, 2019.
I. L. Cherif and A. Kortebi, “On using extreme gradient boosting (XGBoost) machine learning algorithm for home network traffic classification,” in 2019 Wireless Days (WD), 2019, pp. 1–6.
A. Haryati and M. I. Juniaji, “ANALISIS ARAHAN KETINGGIAN BANGUNAN DI KABUPATEN BANDUNG MENGGUNAKAN METODE OVERLAY DAN SCORING,” GEOPLANART, vol. 4, no. 1, pp. 11–22, 2022.
D. A. Pouliot, D. J. King, F. W. Bell, and D. G. Pitt, “Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration,” Remote Sens. Environ., vol. 82, no. 2–3, pp. 322–334, 2002.
T. Yun et al., “Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach,” Remote Sens. Environ., vol. 256, p. 112307, 2021.
S. Allwright, “What is a good accuracy score in machine learning?,” 2022. https://stephenallwright.com/good-accuracy-score/ (accessed Oct. 07, 2022).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Abdul Aziz, Yandra Arkeman, Wisnu Ananta Kusuma, Farohaji Kurniawan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Janapati agree to the following terms:- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)