Enhancing Sales Forecasting Accuracy Through Optimized Holt-Winters Exponential Smoothing with Modified Improved Particle Swarm Optimization

Authors

  • I Putu Susila Handika Institut Bisnis dan Teknologi Indonesia
  • I Kadek Susila Satwika

DOI:

https://doi.org/10.23887/janapati.v12i2.65462

Keywords:

forecasting, holt-winters exponential smoothing, modified particle swarm optimization

Abstract

The Holt-Winters Exponential Smoothing method utilizes three smoothing parameters, namely alpha (α), beta (β), and gamma (γ), which have a significant impact on the accuracy of the forecasting process. One of the main challenges in the Holt-Winters Exponential Smoothing method is to find the best combination of the smoothing parameters, α, β, and γ, to achieve optimal forecasting accuracy. In this research, the MIPSO optimization method is used to find the optimal combination of values for α, β, and γ. The sales data used in the study covers the period from January 2021 to May 2023. The research results indicate the best accuracy achieved by combining the Holt-Winters Exponential Smoothing algorithm with the MIPSO optimization algorithm during the data period from January 2021 to May 2023, with a MAPE value of 9.1717%. Therefore, the use of the MIPSO algorithm helps discover the optimal combination of α, β, and γ parameters for forecasting.

References

F. L. Chen and T. Y. Ou, “Sales forecasting system based on Gray extreme learning machine with Taguchi method in retail industry,” Expert Syst Appl, vol. 38, no. 3, pp. 1336–1345, Mar. 2011, doi: 10.1016/J.ESWA.2010.07.014.

M. Arumsari, A. Tri, and R. Dani, “Peramalan Data Runtun Waktu menggunakan Model Hybrid Time Series Regression – Autoregressive Integrated Moving Average,” Jurnal Siger Matematika, vol. 2, no. 1, pp. 1–12, Mar. 2021, doi: 10.23960/JSM.V2I1.2736.

V. A. Fitria, “Peramalan Harga Sembako di Kota Malang Menggunakan Metode Single Exponential Smoothing,” Jurnal Sains Matematika dan Statistika, vol. 5, no. 1, 2019, Accessed: Jul. 06, 2023. [Online]. Available: http://siskaperbapo.com/harga/tabel

D. Agoes Setiawan, S. Wahyuningsih, and dan Rito Goejantoro, “Peramalan Produksi Kelapa Sawit Menggunakan Winter’s dan Pegel’s Exponential Smoothing dengan Pemantauan Tracking Signal,” Jambura Journal of Mathematics, vol. 2, no. 1, pp. 1–14, Dec. 2020, doi: 10.34312/JJOM.V2I1.2320.

Y. Ariyanto, A. Y. Ananta, and M. R. D. Darwis, “SISTEM INFORMASI PERAMALAN PENJUALAN BARANG DENGAN METODE DOUBLE EXPONENTIAL SMOOTHING (STUDI KASUS ISTANA SAYUR),” Jurnal Informatika Polinema, vol. 6, no. 3, pp. 9–14, May 2020, doi: 10.33795/JIP.V6I3.283.

A. Lusiana and P. Yuliarty, “PENERAPAN METODE PERAMALAN (FORECASTING) PADA PERMINTAAN ATAP di PT X,” Industri Inovatif : Jurnal Teknik Industri, vol. 10, no. 1, pp. 11–20, Jun. 2020, doi: 10.36040/INDUSTRI.V10I1.2530.

I. D. N. A. Manuaba, I. B. G. Manuaba, and M. Sudarma, “Komparasi Metode Peramalan Grey dan Grey-Markov untuk mengetahui Peramalan PNBP di Universitas Udayana,” Majalah Ilmiah Teknologi Elektro, vol. 21, no. 1, pp. 83–88, Jul. 2022, doi: 10.24843/MITE.2022.V21I01.P12.

A. Yani, A. Rachman Hakim, I. Tri Utami, and D. Statistika, “Peramalan Jumlah Penumpang Pesawat Di Bandara Internasional Ahmad Yani Dengan Metode Holt Winter’s Exponential Smoothing Dan Metode Exponential Smoothing Event Based,” Jurnal Gaussian, vol. 9, no. 4, pp. 535–545, Dec. 2020, doi: 10.14710/J.GAUSS.V9I4.29448.

J. N. A. Aziza, “Perbandingan Metode Moving Average, Single Exponential Smoothing, dan Double Exponential Smoothing Pada Peramalan Permintaan Tabung Gas LPG PT Petrogas Prima Services,” Jurnal Teknologi dan Manajemen Industri Terapan, vol. 1, no. I, pp. 35–41, Mar. 2022, doi: 10.55826/TMIT.V1II.8.

A. Aryati, I. Purnamasari, and Y. N. Nasution, “Peramalan dengan Menggunakan Metode Holt-Winters Exponential Smoothing,” EKSPONENSIAL, vol. 11, no. 1, pp. 99–106, Jan. 2021.

G. A. N. Pongdatu, E. Abinowi, and W. S, “PERAMALAN TRANSAKSI PENJUALAN DENGAN METODE HOLT-WINTER EXPONENTIAL SMOOTHING,” Jurnal Ilmiah Teknologi Infomasi Terapan, vol. 6, no. 3, pp. 228–233, Aug. 2020, doi: 10.33197/JITTER.VOL6.ISS3.2020.438.

A. Zubair, A. Zubair, and R. Umamit, “Penerapan Metode Holt-Winters Untuk Peramalan Penjualan (Studi Kasus Keripik Pisang Pigela UD. Haza Food Surabaya),” Techno.Com, vol. 20, no. 4, pp. 499–507, Nov. 2021, doi: 10.33633/tc.v20i4.5093.

T. Alam, S. Qamar, A. Dixit, and M. Benaida, “Genetic Algorithm: Reviews, Implementations, and Applications,” International Journal of Engineering Pedagogy, vol. 10, no. 6, pp. 57–77, Jun. 2020, doi: 10.3991/IJEP.V10I6.14567.

L. Paranduk, A. Indriani, M. Hafid, and J. Sistem Informasi STMIK PPKIA Tarakanita Rahmawati Tarakan, “Sistem Informasi Penjadwalan Mata Kuliah Menggunakan Algoritma Genetika Berbasis Web,” Seminar Nasional Aplikasi Teknologi Informasi (SNATI), pp. 11–2018, Aug. 2018, Accessed: Jul. 07, 2023. [Online]. Available: https://journal.uii.ac.id/Snati/article/view/11127

T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh, and S. Mirjalili, “Particle Swarm Optimization: A Comprehensive Survey,” IEEE Access, vol. 10, pp. 10031–10061, 2022, doi: 10.1109/ACCESS.2022.3142859.

M. H. P. Swari, I. P. S. Handika, I. K. S. Satwika, and H. E. Wahani, “Optimization of Single Exponential Smoothing using Particle Swarm Optimization and Modified Particle Swarm Optimization in Sales Forecast,” Proceeding - IEEE 8th Information Technology International Seminar, ITIS 2022, pp. 292–296, 2022, doi: 10.1109/ITIS57155.2022.10010034.

B. Y. Phiadelvira, D. Z. Haq, D. C. R. Novitasari, and F. Setiawan, “Prediksi Besar Daya Listrik Tenaga Gelombang Laut Metode Oscillating Water Coloumn (PLTGL-OWC) di Banyuwangi Menggunakan Extreme Learning Machine (ELM),” Unnes Journal of Mathematics, vol. 11, no. 1, pp. 1–7, May 2022, doi: 10.15294/ujm.v11i1.50967.

L. Munkhdalai, T. Munkhdalai, K. H. Park, H. G. Lee, M. Li, and K. H. Ryu, “Mixture of Activation Functions with Extended Min-Max Normalization for Forex Market Prediction,” IEEE Access, vol. 7, pp. 183680–183691, 2019, doi: 10.1109/ACCESS.2019.2959789.

M. M. Ahsan, M. A. P. Mahmud, P. K. Saha, K. D. Gupta, and Z. Siddique, “Effect of Data Scaling Methods on Machine Learning Algorithms and Model Performance,” Technologies 2021, Vol. 9, Page 52, vol. 9, no. 3, p. 52, Jul. 2021, doi: 10.3390/TECHNOLOGIES9030052.

T. J. Agr, E. Res, A. Akilli, I. * Hulya, and A. Idb, “Evaluation of Normalization Techniques on Neural Networks for the Prediction of 305-Day Milk Yield,” Turkish Journal of Agricultural Engineering Research, vol. 1, no. 2, pp. 354–367, Dec. 2020, doi: 10.46592/turkager.2020.v01i02.011.

M. Jain, V. Saihjpal, N. Singh, and S. B. Singh, “An Overview of Variants and Advancements of PSO Algorithm,” Applied Sciences 2022, Vol. 12, Page 8392, vol. 12, no. 17, p. 8392, Aug. 2022, doi: 10.3390/APP12178392.

N. Morresi et al., “Sensing physiological and environmental quantities to measure human thermal comfort through machine learning techniques,” IEEE Sens J, vol. 21, no. 10, pp. 12322–12337, May 2021, doi: 10.1109/JSEN.2021.3064707.

A. T. Malik Medan D Permatasari, B. Sihombing, P. Arianto -, M. Demir, M. Abuqbeitah, and L. Uslu-Beli, “Forecasting the Number of Outpatient Patient Visits Using the ARIMA, SES And Holt-Winters Methods at XYZ Community Health Center,” IOP Conf Ser Mater Sci Eng, vol. 879, no. 1, p. 012060, Jul. 2020, doi: 10.1088/1757-899X/879/1/012060.

F. Sidqi and I. D. Sumitra, “Forecasting Product Selling Using Single Exponential Smoothing and Double Exponential Smoothing Methods,” IOP Conf Ser Mater Sci Eng, vol. 662, no. 3, p. 032031, Nov. 2019, doi: 10.1088/1757-899X/662/3/032031.

Downloads

Published

2023-08-03

How to Cite

I Putu Susila Handika, & I Kadek Susila Satwika. (2023). Enhancing Sales Forecasting Accuracy Through Optimized Holt-Winters Exponential Smoothing with Modified Improved Particle Swarm Optimization. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 12(2), 203–212. https://doi.org/10.23887/janapati.v12i2.65462

Issue

Section

Articles