Document Validation for Cooperation Agreement Documents at The Undiksha Cooperation and Public Relations Agency (Badan Kerja Sama dan Kehumasan) using Local Binary Pattern (LBP) and YOLOv5 Methods

Authors

  • Komang Jepri Kusuma Jaya Universitas Pendidikan Ganesha
  • Made Windu Antara Kesiman Universitas Pendidikan Ganesha
  • I Made Dendi Maysanjaya Universitas Pendidikan Ganesha

DOI:

https://doi.org/10.23887/janapati.v12i3.66070

Keywords:

document validation, cooperation agreement document, BKK Undiksha, Local Binary Pattern, YOLOv5

Abstract

A cooperation agreement document managed by BKK Undiksha is a conventionally managed document. With the implementation of the Kampus Merdeka - Merdeka Belajar curriculum in 2021, the number of incoming cooperation agreement documents has increased rapidly, making the collection of document data much longer and inefficient. Therefore, there is a need for a scheme that can automatically validate collaboration documents. The document validation scheme was developed using the Local Binary Patterns and YOLOv5 methods. The data used in the development is primary data from BKK Undiksha in 2021, where two agencies collaborate. The development result is the document validation model collaboration using the Local Binary Pattern and YOLOv5 methods with the best accuracy results of 95.36%, and the ability of the model to detect the number of seal, stamp and signature components is 90.73%.

References

BKK Undiksha, Data dan Statistik Dokumen Kerja Sama. 2021. [Online]. Available: https://www.bertelsmann-stiftung.de/fileadmin/files/BSt/Publikationen/GrauePublikationen/MT_Globalization_Report_2018.pdf%0Ahttp://eprints.lse.ac.uk/43447/1/India_globalisation%2C society and inequalities%28lsero%29.pdf%0Ahttps://www.quora.com/What-is-the

A. Prasetio and P. M. Hasugian, “Improving the Quality of Digital Images Using the Median Filter Technique to Reduce Noise,” SinkrOn, vol. 4, no. 1, p. 143, Oct. 2019, doi: 10.33395/sinkron.v4i1.10155.

O. Joshua, J. S. Owotogbe, T. S. Ibiyemi, and B. A. Adu, “A Comprehensive Review On Various Types of Noise in Image Processing,” Article in International Journal of Scientific and Engineering Research, 2019, [Online]. Available: http://www.ijser.org

R. K. Riad Al-Taie, B. Jumaa Saleh, and H. A. Abu-Alsaad, “A REVIEW PAPER: DIGITAL IMAGE FILTERING PROCESSING.” [Online]. Available: www.techniumscience.com

M. Miladiah, R. Umar, and I. Riadi, “Implementasi Local Binary Pattern untuk Deteksi Keaslian Mata Uang Rupiah,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 5, no. 2, p. 197, 2019, doi: 10.26418/jp.v5i2.32721.

N. Anusha and M. Siva Sindhuri, “Analysis of Document Images through Local Binary Patterns,” Indian J Sci Technol, vol. 10, no. 20, pp. 1–6, 2017, doi: 10.17485/ijst/2017/v10i20/73915.

N. Sharma, R. Mandal, R. Sharma, U. Pal, and M. Blumenstein, “Signature and logo detection using deep CNN for document image retrieval,” Proceedings of International Conference on Frontiers in Handwriting Recognition, ICFHR, vol. 2018-Augus, pp. 416–422, 2018, doi: 10.1109/ICFHR-2018.2018.00079.

U. Nepal and H. Eslamiat, “Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs,” Sensors, vol. 22, no. 2, 2022, doi: 10.3390/s22020464.

CBSE Academic, AI Curriculum Handbook. 2019.

I. P. N. Syair, Ayu Sabrina., Muh Ihsan., “Identifikasi citra tanda tangan menggunakan Local Binary Pattern (LBP) pada Smartphone berbasis Android,” semanTIK, vol. 5, no. 1, pp. 17–24, 2019.

F. Cruz, N. Sidere, M. Coustaty, V. P. D’Andecy, and J. M. Ogier, “Local Binary Patterns for Document Forgery Detection,” in Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, IEEE Computer Society, Jan. 2018, pp. 1223–1228. doi: 10.1109/ICDAR.2017.202.

Š. Hubálovský, P. Trojovský, N. Bacanin, and V. K, “Evaluation of Deepfake Detection Using YOLO with Local Binary Pattern Histogram,” PeerJ Comput Sci, vol. 8, p. e1086, Sep. 2022, doi: 10.7717/peerj-cs.1086.

J. Yao, J. Qi, J. Zhang, H. Shao, J. Yang, and X. Li, “A real-time detection algorithm for kiwifruit defects based on yolov5,” Electronics (Switzerland), vol. 10, no. 14, 2021, doi: 10.3390/electronics10141711.

Jupiyandi Saniputra, F. R. Pratama, and Yoga Dharmawan, “Pengembangan Deteksi Citra Mobil Untuk Mengetahui Jumlah Tempat Parkir Menggunakan Cuda Dan Modified Yolo,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 6, no. 4, pp. 413–419, 2019, doi: 10.25126/jtiik.201961275.

R. Padilla, S. L. Netto, and E. A. B. Da Silva, “A Survey on Performance Metrics for Object-Detection Algorithms,” International Conference on Systems, Signals, and Image Processing, vol. 2020-July, pp. 237–242, 2020, doi: 10.1109/IWSSIP48289.2020.9145130.

Downloads

Published

2023-12-31

How to Cite

Jaya, K. J. K., Kesiman, M. W. A., & Maysanjaya, I. M. D. (2023). Document Validation for Cooperation Agreement Documents at The Undiksha Cooperation and Public Relations Agency (Badan Kerja Sama dan Kehumasan) using Local Binary Pattern (LBP) and YOLOv5 Methods. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 12(3), 426–436. https://doi.org/10.23887/janapati.v12i3.66070

Issue

Section

Articles