Particle Swarm Optimization for Optimizing Public Service Satisfaction Level Classification
DOI:
https://doi.org/10.23887/janapati.v13i1.69612Keywords:
public employees' satisfaction, Decision Tree, Naïve Bayes, Support Vector Machine, -Nearest Neighbor, Particle Swarm OptimizationAbstract
This research aims to categorize survey data to determine the level of satisfaction with the services provided by the village government as a public service provider. Villages or sub-districts currently offer services in response to community demand, although only partially or as efficiently as possible. The data collection technique used was distributing questionnaires to the village community. The method used for classification is the machine learning method. Before the classification process, feature selection is carried out at the data pre-processing stage using Particle Swarm Optimization (PSO), which has been proven to increase the accuracy of the classification values. The classification methods employed include Decision Tree (DT), Naive Bayes, Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) algorithms for classification purposes. This study achieves the maximum level of accuracy in decision tree classification, attaining an accuracy rate of 97.74%. Subsequently, the KNN algorithm achieved an accuracy of 77.90%, the Nave Bayes algorithm achieved 64.4%, and the SVM algorithm, which yielded the lowest accuracy value, achieved 59.90%. Following the application of Particle Swarm Optimization (PSO) for optimization, the accuracy of the SVM and KNN algorithms improved to 98.3%. The Decision Tree algorithm achieved a value of 97.77%, while the Naive Bayes technique yielded a value of 69.30%.
References
D. Banga and K. Peddireddy, “Artificial Intelligence for Customer Complaint Management,” Int. J. Comput. Trends Technol., vol. 71, no. 3, pp. 1–6, 2023, doi: 10.14445/22312803/ijctt-v71i3p101.
K. Wabang, Oky Dwi Nurhayati, and Farikhin, “Application of The Naïve Bayes Classifier Algorithm to Classify Community Complaints,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 5, pp. 872–876, 2022, doi: 10.29207/resti.v6i5.4498.
S. Khedkar and S. Shinde, “Deep Learning and Ensemble Approach for Praise or Complaint Classification,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 449–458, 2020, doi: 10.1016/j.procs.2020.03.254.
M. Abdurohman, R. Husna, I. Ali, G. Dwilestari, and N. Rahaningsih, “Penerapan Model Klasifikasi Dalam Tingkat Kepuasan Layanan Publik Kelurahan Karyamulya Dengan Menggunakan Algoritma Decision Tree,” Inf. Manag. Educ. Prof. J. Inf. Manag., vol. 6, no. 1, p. 81, 2022, doi: 10.51211/imbi.v6i1.1678.
M. Alkaff, A. R. Baskara, and I. Maulani, “Klasifikasi Laporan Keluhan Pelayanan Publik Berdasarkan Instansi Menggunakan Metode LDA-SVM,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 6, pp. 1265–1276, 2021, doi: 10.25126/jtiik.2021863768.
F. Caldeira, L. Nunes, and R. Ribeiro, “Classification of Public Administration Complaints,” OpenAccess Series in Informatics, vol. 104, no. 9. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany, pp. 9:1-9:0, 2022, doi: 10.4230/OASIcs.SLATE.2022.9.
E. Purnamasari, D. Palupi Rini, and Sukemi, “Seleksi Fitur menggunakan Algoritma Particle Swarm Optimization pada Klasifikasi Kelulusan Mahasiswa dengan Metode Naive Bayes,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 3, pp. 469–475, 2020.
S. A. Alsenan, I. M. Al-Turaiki, and A. M. Hafez, “Feature extraction methods in quantitative structure-activity relationship modeling: A comparative study,” IEEE Access, vol. 8, pp. 78737–78752, 2020, doi: 10.1109/ACCESS.2020.2990375.
Y. R. Nugraha, A. P. Wibawa, and I. A. E. Zaeni, “Particle Swarm Optimization-Support Vector Machine (PSO-SVM) Algorithm for Journal Rank Classification,” Proc. - 2019 2nd Int. Conf. Comput. Informatics Eng. Artif. Intell. Roles Ind. Revolut. 4.0, IC2IE 2019, pp. 69–73, 2019, doi: 10.1109/IC2IE47452.2019.8940822.
R. Hidayat, D. Kartini, M. I. Mazdadi, I. Budiman, and R. Ramadhani, “Implementasi Seleksi Fitur Binary Particle Swarm Optimization pada Algoritma K-NN untuk Klasifikasi Kanker Payudara,” J. Sist. dan Teknol. Inf., vol. 11, no. 1, p. 135, 2023, doi: 10.26418/justin.v11i1.53608.
A. Fauzi and A. H. Yunial, “Optimasi Algoritma Klasifikasi Naive Bayes, Decision Tree, K – Nearest Neighbor, dan Random Forest menggunakan Algoritma Particle Swarm Optimization pada Diabetes Dataset,” J. Edukasi dan Penelit. Inform., vol. 8, no. 3, p. 470, 2022, doi: 10.26418/jp.v8i3.56656.
R. Poreddy and E. S. Gopi, “Improvement of accuracy of under-performing classifier in decision making using discrete memoryless channel model and Particle Swarm Optimization,” Expert Syst. Appl., vol. 213, no. September 2022, 2023, doi: 10.1016/j.eswa.2022.118929.
R. G. Santosa, Y. Lukito, and A. R. Chrismanto, “Classification and Prediction of Students’ GPA Using K-Means Clustering Algorithm to Assist Student Admission Process,” J. Inf. Syst. Eng. Bus. Intell., vol. 7, no. 1, p. 1, 2021, doi: 10.20473/jisebi.7.1.1-10.
Y. Wanli Sitorus, P. Sukarno, S. Mandala, F. Informatika, and U. Telkom, “Analisis Deteksi Malware Android menggunakan metode Support Vector Machine & Random Forest,” e-Proceeding Eng., vol. 8, no. 6, p. 12500, 2021.
L. Zhang, “A Feature Selection Algorithm Integrating Maximum Classification Information and Minimum Interaction Feature Dependency Information,” Hindawi Comput. Intell. Neurosci., vol. 2021, 2021.
Y. Zhang, S. Wang, P. Phillips, and G. Ji, “Binary PSO with mutation operator for feature selection using decision tree applied to spam detection,” Knowledge-Based Syst., vol. 64, pp. 22–31, 2014, doi: 10.1016/j.knosys.2014.03.015.
H. H. Patel and P. Prajapati, “Study and Analysis of Decision Tree Based Classification Algorithms,” Int. J. Comput. Sci. Eng., vol. 6, no. 10, pp. 74–78, 2018, doi: 10.26438/ijcse/v6i10.7478.
A. Saputra and Suharjito, “Fraud detection using machine learning in e-commerce,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 9, pp. 332–339, 2019, doi: 10.14569/ijacsa.2019.0100943.
J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A comprehensive survey on support vector machine classification: Applications, challenges and trends,” Neurocomputing, vol. 408, no. xxxx, pp. 189–215, 2020, doi: 10.1016/j.neucom.2019.10.118.
S. H. Hasanah, “Classification Support Vector Machine in Breast Cancer Patients,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 1, pp. 129–136, 2022, doi: 10.30598/barekengvol16iss1pp129-136.
Y. Kustiyahningsih, “Feature Selection and K-nearest Neighbor for Diagnosis Cow Disease,” Int. J. Sci. Eng. Inf. Technol., vol. 5, no. 02, pp. 249–253, 2021, doi: 10.21107/ijseit.v5i02.10218.
R. C. Chen, C. Dewi, S. W. Huang, and R. E. Caraka, “Selecting critical features for data classification based on machine learning methods,” J. Big Data, vol. 7, no. 1, 2020, doi: 10.1186/s40537-020-00327-4.
T. R. Shultz and S. E. Fahlman, Encyclopedia of Machine Learning and Data Mining. 2017.
P. Sedgwick, “How to read a receiver operating characteristic curve,” BMJ, vol. 350, no. May, 2015, doi: 10.1136/bmj.h2464.
T. Arifin and A. Herliana, “Optimizing decision tree using particle swarm optimization to identify eye diseases based on texture analysis,” J. Teknol. dan Sist. Komput., vol. 8, no. 1, pp. 59–63, 2020, doi: 10.14710/jtsiskom.8.1.2020.59-63.
F. Hasibuan, W. Priatna, and T. Sri Lestari, “Analisis Sentimen Terhadap Kementrian Perdagangan Pada Sosial Media Twitter Menggunakan Metode Naïve Bayes Sentiment Analysis Of The Ministry Of Trade On Twitter Social Media Using Naïve Bayes Method,” Techno.COM, vol. 21, no. 4, pp. 741–752, 2022.
H. Said, N. H. Matondang, and H. N. Irmanda, “Penerapan Algoritma K-Nearest Neighbor Untuk Memprediksi Kualitas Air Yang Dapat Dikonsumsi,” Techno.Com, vol. 21, no. 2, pp. 256–267, 2022, doi: 10.33633/tc.v21i2.5901.
M. R. S. Alfarizi, M. Z. Al-farish, M. Taufiqurrahman, G. Ardiansah, and M. Elgar, “Penggunaan Python Sebagai Bahasa Pemrograman untuk Machine Learning dan Deep Learning,” Karya Ilm. Mhs. Bertauhid (KARIMAH TAUHID), vol. 2, no. 1, pp. 1–6, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tyastuti Sri Lestari, Ismaniah Ismaniah, Wowon Priatna
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Janapati agree to the following terms:- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)