Ceramic Firing Temperature Trajectory Monitoring System on IoT-Based Gas Furnace

English

Authors

  • I Wayan Oka Prayasa BRIN
  • Agus Putu Abiyasa Universitas Pendidikan Nasional
  • I Putu Angga Kristyawan National Research and Innovation Agency (BRIN)

DOI:

https://doi.org/10.23887/janapati.v12i3.69708

Keywords:

Internet of Things, Ceramic Firing, Thermocouple Sensor, Monitoring System

Abstract

This study introduces a novel system where a conventional ceramic furnace is upgraded with IoT capabilities, specifically utilizing NodeMCU and a thermocouple sensor. The integrated system enables real-time temperature monitoring, facilitating the correction of firing trajectory errors in the ceramic firing process. The sensors reading minimizes errors by detecting temperature changes with a maximum deviation of -2.5 °C and a minimum deviation of -1 °C. The average error ranges from 1.81% to 3.79%. The collected data is seamlessly transmitted to Google Spreadsheet for online monitoring. This comprehensive solution not only minimizes recording errors but also ensures the quality of final ceramic products by preventing issues such as cracks, breaks, black cores, and non-uniform sizes. The incorporation of NodeMCU, thermocouple sensors, and online monitoring represents a significant technological leap in optimizing ceramic firing processes for heightened precision and efficiency.

References

M. M. Subedi, “Ceramics and its Importance,” Himal. Physics, vol. 4, no. 4, pp. 80–82, 2013, doi: https://doi.org/10.3126/hj.v4i0.9433.

T. Matencio, “Importance of ceramic materials in our society,” Rev. Mater., vol. 25, no. 1, pp. 1–2, 2020, doi: 10.1590/s1517-707620200001.1001.

A. S. P. Utama, W. Tambunan, and L. D. Fathimahhayati, “Analisis Human Error pada Proses Produksi Keramik dengan Menggunakan Metode HEART dan SHERPA,” J. INTECH Tek. Ind. Univ. Serang Raya, vol. 6, no. 1, pp. 12–22, 2020, doi: 10.30656/intech.v6i1.2114.

Prima Yustana, Mengenal Keramik. Isi Press, 2018.

R. B. G. Soebroto, “Tungku Pembakaran Tipe ‘Api Berbalik’ Untuk Meningkatkan Kualitas Gerabah, Desa Selogabus Kecamatan Parengan Tuban,” Semin. Nas. Inov. dan Apl. Teknol. di Ind., pp. 377–384, 2019.

P. Supriatno, “Sistem Kontrol Pada Tungku Keramik Roller Hearth Kiln (Rhk),” J. Wawasan Ilm., vol. 9, no. 1, pp. 25–31, 2019.

K. K. Khaing, K. Srujan Raju, G. R. Sinha, and W. Y. Swe, “Automatic temperature control system using arduino,” Adv. Intell. Syst. Comput., vol. 1090, no. July, pp. 219–226, 2020, doi: 10.1007/978-981-15-1480-7_18.

D. P. Sari, S. Rasyad, A. Amperawan, and S. Muslimin, “Kendali Suhu Air Dengan Sensor Termokopel Tipe-K Pada Simulator Sistem Pengisian Botol Otomatis,” J. Ampere, vol. 3, no. 2, p. 128, 2018, doi: 10.31851/ampere.v3i2.2393.

I. W. G. Partamayasa, I. K. Gede Suhartana, and I. W. Supriana, “Perancangan Sistem Pengaturan Suhu Ruangan Otomatis Berbasis Mikrokontroler,” JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 8, no. 1, p. 95, 2019, doi: 10.24843/jlk.2019.v08.i01.p12.

B. H. Wijaya, A. D. Asyiqin, and A. Damanuri, “Penggunaan Teknologi Dan Potensi Penerapan Internet Of Things (IoT) Dalam Pengembangan UMKM: Studi Kasus Resto Ayam Buldak,” Invest J. Sharia Econ. Law, vol. 2, no. 1, pp. 92–105, 2022, doi: 10.21154/invest.v2i1.4672.

Y. Efendi, “Internet Of Things (Iot) Sistem Pengendalian Lampu Menggunakan Raspberry Pi Berbasis Mobile,” J. Ilm. Ilmu Komput., vol. 4, no. 1, pp. 19–26, 2018, doi: 10.35329/jiik.v4i1.48.

M. Z. Elfirman and M. Alkaff, “Pemanfaatan Wireless Sensor Network Berbasis Internet of Things Untuk Monitoring Lahan Gambut Jarak Jauh,” J. Ilm. Ilmu Komput., vol. 13, no. 1, pp. 56–59, 2018.

I. Gunawan, T. Akbar, and M. Giyandhi Ilham, “Prototipe Penerapan Internet Of Things (Iot) Pada Monitoring Level Air Tandon Menggunakan Nodemcu Esp8266 Dan Blynk,” Infotek J. Inform. dan Teknol., vol. 3, no. 1, pp. 1–7, 2020, doi: 10.29408/jit.v3i1.1789.

Y. Wishnu Pandu Prayudha, S. Fadhil, and S. Novianto, “Rancang Bangun Sistem Pengukuran Alat Thermobath sebagai Alat Kalibrasi Temperatur dengan Sistem Arduino Uno,” J. Asiimetrik J. Ilm. Rekayasa Inov., vol. 4, pp. 25–34, 2022, doi: 10.35814/asiimetrik.v4i1.2541.

Maxim, “MAX31855 Cold-Junction Compensated Thermocouple-to-Digital Converter,” Sunnyvale, 2012. [Online]. Available: www.maxim-ic.com/MAX31855.related.

A. Fedorov, “Connection of Thermocouple (K-Type) to ESP8266/ESP32/Arduino,” 2019. .

F. A. Fhadillah, A. Andang, and N. Busaeri, “Sistem Kontrol Suhu Electric Muffle Furnace Menggunakan Sensor Thermokopel Type-K Berbasis Mikrokontroller Arduino Uno,” J. Energy Electr. Eng., vol. 113, no. 2, pp. 113–124, 2023.

A. M. A. Jiwatami, “Aplikasi Termokopel untuk Pengukuran Suhu Autoklaf,” Lontar Phys. Today, vol. 1, no. 1, pp. 38–44, 2022, doi: 10.26877/lpt.v1i1.10695.

A. J. Hidayat, I. Marzuki, and I. Wicaksono, “Rancang Bangun Pengendali Temperature Berbasis Arduino Uno Pada Ketel UAP di Pabrik Gula Wonolangan,” J. JISE, vol. 1, no. 1, pp. 17–22, 2022.

R. F. Maulana, M. A. Ramadhan, W. Maharani, and M. I. Maulana, “Rancang Bangun Sistem Monitoring Suhu dan Kelembapan Berbasis IOT Studi Kasus Ruang Server ITTelkom Surabaya,” vol. 1, no. 3, pp. 224–231, 2023.

F. A. Deswar and R. Pradana, “Monitoring Suhu Pada Ruang Server Menggunakan Wemos D1 R1 Berbasis Internet of Things (Iot),” Technol. J. Ilm., vol. 12, no. 1, p. 25, 2021, doi: 10.31602/tji.v12i1.4178.

Z. Zakaria, F. Fauzi, I. Irhamni, and E. Iswardy, “Rancang Bangun Sistem Pengontrolan Lampu Berbasis Komputer Dan Arduino Untuk Aplikasi Smart Home,” J. Komputer, Inf. Teknol. dan Elektro, vol. 6, no. 1, pp. 26–31, 2021, doi: 10.24815/kitektro.v6i1.21241.

T. F. Arya, M. Faiqurahman, and Y. Azhar, “Aplikasi Wireless Sensor Network Untuk Sistem Monitoring Dan Klasifikasi Kualitas Udara,” Sistemasi, vol. 7, no. 3, p. 281, 2018, doi: 10.32520/stmsi.v7i3.312.

Downloads

Published

2023-12-31

How to Cite

I Wayan Oka Prayasa, Abiyasa, A. P., & Kristyawan, I. P. A. (2023). Ceramic Firing Temperature Trajectory Monitoring System on IoT-Based Gas Furnace: English. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 12(3), 398–405. https://doi.org/10.23887/janapati.v12i3.69708

Issue

Section

Articles