Classification of Dog Emotions Using Convolutional Neural Network Method

Authors

  • Slamet Hermawan Universitas Buana Perjuangan Karawang
  • Amril Mutoi Siregar Universitas Buana Perjuangan Karawang https://orcid.org/0000-0001-8746-3283
  • Sutan Faisal Universitas Buana Perjuangan Karawang
  • Tohirin Al Mudzakir Universitas Buana Perjuangan Karawang

DOI:

https://doi.org/10.23887/janapati.v13i2.74340

Keywords:

classification, convolutional neural network, dog emotion, ROC-AUC

Abstract

The utilization of neural networks in dog emotion classification has great potential to improve the understanding of pet emotions. The goal is to develop a dog emotion classification system. This is important due to the lack of public ability to recognize and understand dog emotions. Neural networks able to create learning models can be used for decision-making, thus helping to reduce the risk of dangerous dog attacks. CNN itself is part of neural networks, where the CNN model has a higher accuracy rate of 74.75% compared to ResNet 65.10% and VGG 68.67%. Modeling using ROC-AUC shows the model's ability to distinguish emotion classes well. Angry has the highest AUC of 0.97, happy 0.93 and sad 0.96. While relaxed has the lowest AUC of 0.92. Classification report results show model has the highest precision and F1-Score values in angry class, while the highest recall value is in sad class.

Author Biographies

Slamet Hermawan, Universitas Buana Perjuangan Karawang

Departement of Informatics

Amril Mutoi Siregar, Universitas Buana Perjuangan Karawang

Departement of Informatics

Sutan Faisal, Universitas Buana Perjuangan Karawang

Departement of Informatics

Tohirin Al Mudzakir, Universitas Buana Perjuangan Karawang

Departement of Informatics

References

R. D. Hawkins, B. D. M. Hatin, dan E. O. Revesz, “Accuracy of Canine vs. Human Emotion Identification: Impact of Dog Ownership and Belief in Animal Mind,” Human-animal Interact. Bull., vol. 2021, no. 2, hal. 1–18, 2021, doi: 10.1079/hai.2021.0001.

D. Mota-Rojas et al., “Current advances in assessment of dog’s emotions, facial expressions, and their use for clinical recognition of pain,” Animals, vol. 11, no. 11, 2021, doi: 10.3390/ani11113334.

M. Walker, “Dogs and Cats,” Hitch. Motifs, hal. 142–145, 2019, doi: 10.1515/9789048505456-016.

L. Lazarowski et al., “Selecting Dogs for Explosives Detection: Behavioral Characteristics,” Front. Vet. Sci., vol. 7, no. September, 2020, doi: 10.3389/fvets.2020.00597.

F. Amici, J. Waterman, C. M. Kellermann, K. Karimullah, dan J. Bräuer, “The ability to recognize dog emotions depends on the cultural milieu in which we grow up,” Sci. Rep., vol. 9, no. 1, hal. 1–10, 2019, doi: 10.1038/s41598-019-52938-4.

C. Correia-Caeiro, K. Guo, dan D. S. Mills, “Visual perception of emotion cues in dogs: a critical review of methodologies,” Anim. Cogn., vol. 26, no. 3, hal. 727–754, 2023, doi: 10.1007/s10071-023-01762-5.

P. Jain, A. K. Pandey, V. Manoj, K. Pandey, dan B. Yadav, “Facial Emotion Recognition of Cat Breeds by Using Convolution Neural Network,” vol. 7, no. 6, hal. 58–63, 2023.

M. Vishwakarma, K. Jangid, K. Pal, dan L. Rodrigues, “Cat Breed & Emotion Detection Using Yolo , CNN & Canny Edge Detection,” vol. 7, no. 8, hal. 1–9, 2024.

A. Quaranta, S. D’ingeo, R. Amoruso, dan M. Siniscalchi, “Emotion recognition in cats,” Animals, vol. 10, no. 7, hal. 1–13, 2020, doi: 10.3390/ani10071107.

T. Boneh-Shitrit et al., “Deep Learning Models for Automated Classification of Dog Emotional States from Facial Expressions,” hal. 1–6, 2022, [Daring]. Tersedia pada: http://arxiv.org/abs/2206.05619

A. Khan et al., “Knowledge, attitude & practices (KAPs) regarding rabies endemicity among the community members, Pakistan,” Acta Trop., vol. 200, no. July, hal. 105156, 2019, doi: 10.1016/j.actatropica.2019.105156.

W. Muldayani, “Implementasi Sistem Object Tracking Untuk Mendeteksi Dua Objek Berbasis Deep Learning,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 14, no. 1, hal. 1–14, 2023, doi: 10.24176/simet.v14i1.9236.

S. Aich, S. Chakraborty, J. S. Sim, D. J. Jang, dan H. C. Kim, “The design of an automated system for the analysis of the activity and emotional patterns of dogs with wearable sensors using machine learning,” Appl. Sci., vol. 9, no. 22, hal. 1–22, 2019, doi: 10.3390/APP9224938.

A. Hussain, S. Ali, Abdullah, dan H. C. Kim, “Activity Detection for the Wellbeing of Dogs Using Wearable Sensors Based on Deep Learning,” IEEE Access, vol. 10, hal. 53153–53163, 2022, doi: 10.1109/ACCESS.2022.3174813.

V. Franzoni, A. Milani, G. Biondi, dan F. Micheli, “A preliminary work on dog emotion recognition,” Proc. - 2019 IEEE/WIC/ACM Int. Conf. Web Intell. Work. WI 2019 Companion, hal. 91–96, 2019, doi: 10.1145/3358695.3361750.

Y. Mao dan Y. Liu, “Pet dog facial expression recognition based on convolutional neural network and improved whale optimization algorithm,” Sci. Rep., vol. 13, no. 1, hal. 1–20, 2023, doi: 10.1038/s41598-023-30442-0.

N. H. Pratama, E. Rachmawati, dan G. Kosala, “Classification of Dog Breeds From Sporting Groups Using Convolutional Neural Network,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 4, hal. 1080–1087, 2022, doi: 10.29100/jipi.v7i4.3208.

J. Liang, “Image classification based on RESNET,” J. Phys. Conf. Ser., vol. 1634, no. 1, 2020, doi: 10.1088/1742-6596/1634/1/012110.

S. Tammina, “Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images,” Int. J. Sci. Res. Publ., vol. 9, no. 10, hal. p9420, 2019, doi: 10.29322/ijsrp.9.10.2019.p9420.

Y. Wu, “Emotion Detection of Dogs and Cats Using Classification Models and Object Detection Model Emotion Detection of Dogs and Cats Using Classification Models and Object Detection Model,” no. May, 2023.

S. Hwang, H. K. Shin, J. M. Park, B. Kwon, dan M. G. Kang, “Classification of dog skin diseases using deep learning with images captured from multispectral imaging device,” Mol. Cell. Toxicol., vol. 18, no. 3, hal. 299–309, 2022, doi: 10.1007/s13273-022-00249-7.

H. Y. Chen, C. H. Lin, J. W. Lai, dan Y. K. Chan, “Convolutional Neural Network-Based Automated System for Dog Tracking and Emotion Recognition in Video Surveillance,” Appl. Sci., vol. 13, no. 7, hal. 1–29, 2023, doi: 10.3390/app13074596.

A. Mutoi Siregar, S. Faisal, H. H. Handayani, dan A. Jalaludin, “Classification Data for Direct Marketing using Deep Learning,” Core.Ac.Uk, vol. 7, no. 2, 2020, doi: 10.27512/sjppi-ukm/se/a15052020.

E. M. C. Bouma, M. L. Reijgwart, P. Martens, dan A. Dijkstra, “Cat owners’ anthropomorphic perceptions of feline emotions and interpretation of photographs,” Appl. Anim. Behav. Sci., vol. 270, no. November 2023, hal. 106150, 2024, doi: 10.1016/j.applanim.2023.106150.

S. Pada Plat Kendaraan Dinas dengan Metode Deteksi Tepi Canny, R. Rizal Adi Saputra, dan F. Mimi Wahyuni, “Segmentasi Pada Plat Kendaraan Dinas Menggunakan deteksi Tepi (Reskal) |328,” J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 1, hal. 328–339, 2022.

R. Fakhri, I. R. Magdalena, R. Yunendah, dan N. Fu’adah, “Deteksi Status Gizi Balita Dengan Estimasi Antropometri Menggunakan Metode Deteksi Tepi Berbasis Pengolahan Citra Digital Child’S Nutritional Status Detection With Anthropometry Estimation Using Edge Detection Method Based on Digital Image Processing,” vol. 6, no. 1, hal. 642–649, 2019.

L. M. Prayogo dan S. Sarono, “Automated Extraction of Shoreline in Tuban Regency, East Java from Google Earth Imagery by Integrating Canny Edge Detector,” DoubleClick J. Comput. Inf. Technol., vol. 5, no. 2, hal. 81, 2022, doi: 10.25273/doubleclick.v5i2.11056.

M. R. Wathani, N. Hidayati, U. Islam, K. Muhammad, dan A. Al, “Analisis Perbandingan Fungsi Aktivasi CNN Pada Beras,” vol. 4, no. 2, hal. 144–153, 2023.

A. Akram, S. A. Rachmadinasya, F. H. Melvandino, dan H. Ramza, “Klasifikasi Aktivitas Olahraga Berdasarkan Citra Foto Dengan Menggunakan Metode Convolutional Neural Network,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3s1, 2023, doi: 10.23960/jitet.v11i3s1.3496.

F. Z. Rahmanti, B. A. S. Aji, O. A. Permata, B. Amelia, dan M. H. Z. Al Faroby, “Leaf Health Identification on Melon Plants Using Convolutional Neural Network,” J. Nas. Pendidik. Tek. Inform., vol. 12, no. 1, hal. 127–134, 2023, doi: 10.23887/janapati.v12i1.58492.

M. Dennis, R. Rahmaddeni, F. Zoromi, dan M. K. Anam, “Penerapan Algoritma Naïve Bayes Untuk Pengelompokkan Predikat Peserta Uji Kemahiran Berbahasa Indonesia,” J. Media Inform. Budidarma, vol. 6, no. 2, hal. 1183, 2022, doi: 10.30865/mib.v6i2.3956.

R. Prayogo, D. Anggraeni, dan A. F. Hadi, “Classification of Cardiovascular Disease Gene Data Using Discriminant Analysis and Support Vector Machine (SVM),” Berk. Sainstek, vol. 10, no. 3, hal. 124, 2022, doi: 10.19184/bst.v10i3.22259.

Downloads

Published

2024-07-27

How to Cite

Hermawan, S., Siregar, A. M., Faisal, S., & Mudzakir, T. A. (2024). Classification of Dog Emotions Using Convolutional Neural Network Method. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 13(2), 258–269. https://doi.org/10.23887/janapati.v13i2.74340

Issue

Section

Articles