Optimizing Machine Learning Performance with The Naive Bayes Classifier Process in Smart Farming

Authors

  • Made Yosfin Saputra Universitas Udayana
  • I Wayan Santiyasa Universitas Udayana

DOI:

https://doi.org/10.23887/janapati.v13i2.76926

Keywords:

Agriculture, Global Warming, Machine Learning, Naive Bayes Classifier

Abstract

Indonesia is a country that relies heavily on the agricultural and plantation sectors to meet its needs for food and industrial raw materials. But farmers face challenges such as falling commodity prices and the negative impact of global warming, which has resulted in widespread drought. As a result, competition for water resources between the agricultural, industrial and household sectors is getting tighter, making it increasingly difficult for farmers to guarantee water supplies. The phenomenon of global warming has caused challenges in the current era. In Bali, although there is a method called “Subak” to manage rice field irrigation systems, it has not been fully implemented. To overcome this problem, a solution is needed that can automate water distribution based on soil moisture levels, temperature, light and air humidity. It uses machine learning techniques specifically using Naive Bayes Classifier to make real-time decisions regarding crop irrigation. The aim of this research is to increase the efficiency and effectiveness of crop irrigation in agriculture while reducing the impact of warming. The results of testing the scenario with orchid plants obtained an accuracy of around 80% and with general plants obtained around 80% which was tested every time 5 data were collected. Testing with a total of 84 training data and 26 test data. From the test results, an accuracy of 92.30769% was obtained.

References

Cahyaningrum, Y.D. 2020. Sektor Pertanian: Harapan Pemulihan?. URL : https://feb.ub.ac.id/sektor-pertanian-harapan-pemulihan/. Diakses tgl. 25 Februari 2023.

BMKG. 2023. Anomali Suhu Udara Rata-Rata Bulan Januari 2023. URL : https://www.bmkg.go.id/iklim/?p=ekstrem-perubahan-iklim. Diakses tgl 19 Februari 2023.

Fajar, M., Chandra, F.B., and Arfandy, H. 2023. Applying Use Case 2.0 Approach To The Development Of Iot-Based Rainfall Monitoring System. Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI. 12(2): 244-253.

Zusrotun, O.P., Murti, A.C., and Fiati, R. 2022. Sentimen Analisis Belajar Online Di Twitter Menggunakan Naïve Bayes. Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI. 11(3): 310-320.

Saputra, D.I. and Hakim, D.L. 2022. Implementasi Algoritma Gaussian Naive Bayes Classifier Untuk Prediksi Potensi Tsunami Berbasis Mikrokontroler. Journal of Electrical Engineering and Information Technology. 2 (20): 122-138.

Pratama, S.M., Kurniawan, W. and Fitriyah, H. 2018. Implementasi Algoritma Naive Bayes Menggunakan Arduino Uno untuk Otomatisasi Lampu Ruangan Berdasarkan Kebiasaan dari Penghuni Rumah. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. 2 (9): 2485-2490.

Ginantri, N.L.W.S.R., Yanti, C.P., Prasetya, G.D., Sarasvananda, I.B.D., and Wiguna, I.K.A.G. 2022. Analisis Sentimen Ulasan Villa Di Ubud Menggunakan Metode Naïve Bayes, Decision Tree, Dan K-NN. Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI. 11(3): 205-216.

Roihan, A., Sunarya, P.A. and Rafika, A.S. 2020. Pemanfaatan Machine Learning dalam Berbagai Bidang: Review Paper. IJCIT (Indonesian Journal on Computer and Information Technology). 5 (1):75-82.

Pradana, L.E. and Ruldeviyani, Y. 2023. Sentiment Analysis of Nanovest Investment Application Using Naive Bayes Algorithm. Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI. 12(2): 283-293.

Romli, I. and Dewi, R.F.P. 2021. Penerapan Data Mining Menggunakan Algoritma K-Means Untuk Klasifikasi Penyakit ISPA. Indonesian Journal of Business Intelligence. 4 (1):10-15.

Alghifari, F. and Juardi, D. 2021. Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma Naïve Bayes. Jurnal Ilmiah Informatika. 9 (2):75-81.

Fan, C., Chen, M., Wang, X., Wang, J., and Huang, B. 2021. A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Frontiers in Energy Research. 9: 1-17.

Subawa, I.G.B. 2019. Prediksi Kelulusan Mahasiswa Menggunakan Teorema Teorema Bayes (Studi Kasus: Universitas Pendidikan Ganesha). Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI. 8(3): 227-236.

Zhou, J., Li, P., and Wang, J. 2022. Effects of Light Intensity and Temperature on the Photosynthesis Characteristics and Yield of Lettuce. Holticulturae. 8(178): 1-1.

Ridwan, K.M.S.M. 2021. Penerapan IoT Dalam 62 Sistem Otomatisasi Kontrol Suhu, Kelembaban, dan Tingkat Keasaman Hidroponik. J. Tek. Pertan. Lampung, 10(4): 481–487, doi: 10.23960/jtep-l.v10i4.481-487.

Rahardjo, P. 2022. Sistem Penyiraman Otomatis Menggunakan Sensor Kelembaban Tanah Berbasis Mikrokontroler Arduino Mega 2560 Pada Tanaman Mangga Harum Manis Buleleng Bali. Majalah Ilmiah Teknologi Elektro. 21 (1):31-34.

Prayasa, I.W.O., Abiyasa, A.P., and Kristyawan, I.P.A. 2023. Ceramic Firing Temperature Trajectory Monitoring System On Iot-Based Gas Furnace. Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI. 12(3): 398-405.

BPS, 2022. Pengamatan Unsur Iklim di Stasiun Geofisika Denpasar, 2022. URL : https://bali.bps.go.id/statictable/2022/07/13/183/pengamatan-unsur-iklim-di-stasiun-geofisika-denpasar-2021.html. Diakses tgl. 12 April 2023.

Hidayatullah, P., Orisa, M., and Mahmudi, A. 2022. Rancang Bangun Sistem Monitoring dan Kontrol Tanaman Hidroponik Berbasis Internet Of Things (IOT). Jurnal Mahasiswa Teknik Informatika. 6 (2):1200-1207.

Najikh, R.A., Hanafi, M.H., and Kurniawan, W. 2018. Monitoring Kelembaban, Suhu, Intensitas Cahaya Pada Tanaman Anggrek Menggunakan ESP8266 Dan Arduino Nano. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. 2(11): 4607-4612.

Mas, F.A., Suciyati, S.W., Pauzi, G.A., and Junaidi. 2022. Smart Greenhouse Monitoring With Soil Temperature and Humidity Control on Internet of Things (IoT) Based Orchid Plants. Journal of Energy, Material, and Instrumentation Technology. 3 (3):79-88.

Downloads

Published

2024-07-27

How to Cite

Saputra, M. Y., & I Wayan Santiyasa. (2024). Optimizing Machine Learning Performance with The Naive Bayes Classifier Process in Smart Farming. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 13(2), 382–393. https://doi.org/10.23887/janapati.v13i2.76926

Issue

Section

Articles