Banana and Orange Classification Detection Using Convolutional Neural Network
DOI:
https://doi.org/10.23887/janapati.v13i3.80032Keywords:
artificial intelligence, convolutional neural network, fruits, fruits quality, machine learningAbstract
Fruits play a crucial role in human health, with an average consumption of 81.14 grams per capita per day in Indonesia, where bananas and oranges are the most consumed fruits. Inconsistent fruit quality, typically evaluated manually by farmers, can influence consumer decisions. Artificial intelligence (AI) and computer vision can enhance efficiency and consistency in analyzing fruit quality. Convolutional Neural Networks (CNN) are particularly effective in image recognition. This research uses CNN to classify the quality of bananas and oranges from a dataset of 4000 images, divided into 10% test data, 80% training data, and 10% validation data. Among three models tested, Model 2 performed best with an accuracy of 96.75% and balanced high F1-scores across all categories. The results demonstrate that the CNN model is capable of classifying the quality of bananas and oranges with high accuracy and good evaluation results.
References
S. Uhai and W. Sudarmayasa, “PELATIHAN PEMBUATAN MAKANAN SEHAT UNTUK PROGRAM DIET ALAMI YANG BERGIZI UNTUK KELOMPOK IBU-IBU DI SAMARINDA,” Sebatik, vol. 24, no. 2, pp. 222–227, 2020.
“Terus Dorong Peningkatan Konsumsi Buah Nusantara, Pemerintah Gelar Kembali Gelar Buah Nusantara (GBN) ke-7 Tahun 2022.” [Online]. Available: www.ekon.go.id
A. C. B. Bolfarini et al., “Ideal harvest stage and quality descriptors of 5 banana cultivars based on 5 fruit diameters,” Emir J Food Agric, vol. 32, no. 3, pp. 220–228, Mar. 2020, doi: 10.9755/ejfa.2020.v32.i3.2079.
M. Thakre, M. K. Verma, K. Singh, O. P. Awasthi, R. R. Sharma, and M. Ray, “Proposal and validation of colour index for Kinnow Mandarin (Citrus nobilis × Citrus deliciosa),” Indian Journal of Agricultural Sciences, vol. 88, no. 8, pp. 1179–1183, Aug. 2018, doi: 10.56093/ijas.v88i8.82521.
S. Istoto and I. K. Subagja, “PENGARUH KUALITAS PRODUK DAN PROMOSI TERHADAP KEPUTUSAN PEMBELIAN BUAH MELON PT. SYAFINA NIAGA,” Jurnal Manajemen Bisnis Krisnadwipayana, vol. 6, no. 2, 2018.
V. Farina, R. Lo Bianco, and A. Mazzaglia, “Evaluation of Late-Maturing Peach and Nectarine,” agriculture, vol. 9, no. 9, pp. 1–11, 2019.
P. Jaiswal, S. N. Jha, P. P. Kaur, R. Bhardwaj, A. K. Singh, and V. Wadhawan, “Prediction of textural attributes using color values of banana (Musa sapientum) during ripening,” J Food Sci Technol, vol. 51, no. 6, pp. 1179–1184, Jun. 2020, doi: 10.1007/s13197-012-0614-2.
A. Bhargava and A. Bansal, “Fruits and vegetables quality evaluation using computer vision: A review,” Mar. 01, 2021, King Saud bin Abdulaziz University. doi: 10.1016/j.jksuci.2018.06.002.
B. Huang, Y. Huan, L. Da Xu, L. Zheng, and Z. Zou, “Automated trading systems statistical and machine learning methods and hardware implementation: a survey,” Jan. 02, 2019, Taylor and Francis Ltd. doi: 10.1080/17517575.2018.1493145.
L. Balyen and T. Peto, “Promising artificial intelligence–machine learning–deep learning algorithms in ophthalmology,” Asia-Pacific Journal of Ophthalmology, vol. 8, no. 3, pp. 264–272, May 2019, doi: 10.22608/APO.2018479.
M. Haris, T. Pustaka, M. H. Diponegoro, S. Kusumawardani, and I. Hidayah, “Tinjauan Pustaka Sistematis: Implementasi Metode Deep Learning pada Prediksi Kinerja Murid (Implementation of Deep Learning Methods in Predicting Student Performance: A Systematic Literature Review),” 2021.
Q. Bi, K. E. Goodman, J. Kaminsky, and J. Lessler, “What is machine learning? A primer for the epidemiologist,” Am J Epidemiol, vol. 188, no. 12, pp. 2222–2239, Dec. 2019, doi: 10.1093/aje/kwz189.
S. Fifin Alamsyah, “IMPLEMENTASI DEEP LEARNING UNTUK KLASIFIKASI TANAMAN TOGA BERDASARKAN CIRI DAUN BERBASIS ANDROID,” Ubiquitous: Computers and its Applications Journal, vol. 2, no. 2, pp. 113–122, 2019.
P. Adi Nugroho, I. Fenriana, and R. Arijanto, “IMPLEMENTASI DEEP LEARNING MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK ( CNN ) PADA EKSPRESI MANUSIA,” JURNAL ALGOR, vol. 2, no. 1, 2020, [Online]. Available: https://jurnal.buddhidharma.ac.id/index.php/algor/index
S. Yuliany and A. Nur Rachman, “Implementasi Deep Learning pada Sistem Klasifikasi Hama Tanaman Padi Menggunakan Metode Convolutional Neural Network (CNN),” Jurnal Buana Informatika, vol. 13, no. 1, pp. 54–65, 2022.
V. S. Bawa and V. Kumar, “Linearized sigmoidal activation: A novel activation function with tractable non-linear characteristics to boost representation capability,” Expert Syst Appl, vol. 120, pp. 346–356, Apr. 2019, doi: 10.1016/j.eswa.2018.11.042.
M. R. R. Allaam, “KLASIFIKASI GENUS TANAMAN ANGGREK MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN),” 2021.
M. T. Ahad, Y. Li, B. Song, and T. Bhuiyan, “Comparison of CNN-based deep learning architectures for rice diseases classification,” Artificial Intelligence in Agriculture, vol. 9, pp. 22–35, Sep. 2023, doi: 10.1016/j.aiia.2023.07.001.
E. Rasywir, R. Sinaga, and Y. Pratama, “Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network (CNN),” Paradigma – Jurnal Informatika dan Komputer, vol. 22, no. 2, pp. 117–123, 2020, doi: 10.31294/p.v21i2.
R. Dhamayanti, M. F. Rohmah, and S. Zahara, “PENGGUNAAN DEEP LEARNING DENGAN METODE CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI KUALITAS SAYUR KOL BERDASARKAN CITRA FISIK,” Submit, vol. 1, no. 1, pp. 8–15, 2021, [Online]. Available: http://ejurnal.unim.ac.id/index.php/submit
S. Napitu, R. Paramita Panjaitan, P. A. Nulhakim, and M. Khalik Lubis, “Klasifikasi Buah Jeruk Segar dan Busuk Berdasarkan RGB dan HSV Menggunakan Metode KNN,” Jurnal SAINTEKOM, vol. 13, no. 2, pp. 214–221, Sep. 2023, doi: 10.33020/saintekom.v13i2.420.
Ryan Park, “Fruit Quality Classification.” Accessed: Aug. 05, 2024. [Online]. Available: https://www.kaggle.com/datasets/ryandpark/fruit-quality-classification/data
N. Augustien and N. Triani, “Effect of Organic Growth Regulator and Shade Percentage in The Cavendish Banana (Musa acuminata) Plantlet Acclimatization,” 2021.
M. Thakre, M. K. Verma, K. Singh, O. P. Awasthi, R. R. Sharma, and M. Ray, “Proposal and validation of colour index for Kinnow Mandarin (Citrus nobilis × Citrus deliciosa),” Indian Journal of Agricultural Sciences, vol. 88, no. 8, pp. 1179–1183, Aug. 2018, doi: 10.56093/ijas.v88i8.82521.
T. Yasmin, M. A. Islam, Q. F. Quadir, D. C. Joyce, and B. Bhandari, “Ripening quality of banana cv. Amritasagor through application of different ripening agents,” Archives of Agriculture and Environmental Science, vol. 6, no. 1, pp. 35–41, Mar. 2021, doi: 10.26832/24566632.2021.060105.
R. S. de Brito, R. A. Andrade, and R. de Carvalho Andrade Neto, “Fruit production and quality of sweet orange genotypes selected for the state of Acre, Brazil,” Revista Brasileirade Ciencias Agrarias, vol. 16, no. 2, 2021, doi: 10.5039/AGRARIA.V16I3A111.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Benedict Evan Lumban Batu Lumban Batu, Wahyu Andi Saputra, Aminatus Sa'adah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Janapati agree to the following terms:- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)