Banana and Orange Classification Detection Using Convolutional Neural Network

Authors

  • Benedict Evan Lumban Batu Lumban Batu Institut Teknologi Telkom Purwokerto
  • Wahyu Andi Saputra Telkom University
  • Aminatus Sa'adah Telkom University

DOI:

https://doi.org/10.23887/janapati.v13i3.80032

Keywords:

artificial intelligence, convolutional neural network, fruits, fruits quality, machine learning

Abstract

Fruits play a crucial role in human health, with an average consumption of 81.14 grams per capita per day in Indonesia, where bananas and oranges are the most consumed fruits. Inconsistent fruit quality, typically evaluated manually by farmers, can influence consumer decisions. Artificial intelligence (AI) and computer vision can enhance efficiency and consistency in analyzing fruit quality. Convolutional Neural Networks (CNN) are particularly effective in image recognition. This research uses CNN to classify the quality of bananas and oranges from a dataset of 4000 images, divided into 10% test data, 80% training data, and 10% validation data. Among three models tested, Model 2 performed best with an accuracy of 96.75% and balanced high F1-scores across all categories. The results demonstrate that the CNN model is capable of classifying the quality of bananas and oranges with high accuracy and good evaluation results.

References

S. Uhai and W. Sudarmayasa, “PELATIHAN PEMBUATAN MAKANAN SEHAT UNTUK PROGRAM DIET ALAMI YANG BERGIZI UNTUK KELOMPOK IBU-IBU DI SAMARINDA,” Sebatik, vol. 24, no. 2, pp. 222–227, 2020.

“Terus Dorong Peningkatan Konsumsi Buah Nusantara, Pemerintah Gelar Kembali Gelar Buah Nusantara (GBN) ke-7 Tahun 2022.” [Online]. Available: www.ekon.go.id

A. C. B. Bolfarini et al., “Ideal harvest stage and quality descriptors of 5 banana cultivars based on 5 fruit diameters,” Emir J Food Agric, vol. 32, no. 3, pp. 220–228, Mar. 2020, doi: 10.9755/ejfa.2020.v32.i3.2079.

M. Thakre, M. K. Verma, K. Singh, O. P. Awasthi, R. R. Sharma, and M. Ray, “Proposal and validation of colour index for Kinnow Mandarin (Citrus nobilis × Citrus deliciosa),” Indian Journal of Agricultural Sciences, vol. 88, no. 8, pp. 1179–1183, Aug. 2018, doi: 10.56093/ijas.v88i8.82521.

S. Istoto and I. K. Subagja, “PENGARUH KUALITAS PRODUK DAN PROMOSI TERHADAP KEPUTUSAN PEMBELIAN BUAH MELON PT. SYAFINA NIAGA,” Jurnal Manajemen Bisnis Krisnadwipayana, vol. 6, no. 2, 2018.

V. Farina, R. Lo Bianco, and A. Mazzaglia, “Evaluation of Late-Maturing Peach and Nectarine,” agriculture, vol. 9, no. 9, pp. 1–11, 2019.

P. Jaiswal, S. N. Jha, P. P. Kaur, R. Bhardwaj, A. K. Singh, and V. Wadhawan, “Prediction of textural attributes using color values of banana (Musa sapientum) during ripening,” J Food Sci Technol, vol. 51, no. 6, pp. 1179–1184, Jun. 2020, doi: 10.1007/s13197-012-0614-2.

A. Bhargava and A. Bansal, “Fruits and vegetables quality evaluation using computer vision: A review,” Mar. 01, 2021, King Saud bin Abdulaziz University. doi: 10.1016/j.jksuci.2018.06.002.

B. Huang, Y. Huan, L. Da Xu, L. Zheng, and Z. Zou, “Automated trading systems statistical and machine learning methods and hardware implementation: a survey,” Jan. 02, 2019, Taylor and Francis Ltd. doi: 10.1080/17517575.2018.1493145.

L. Balyen and T. Peto, “Promising artificial intelligence–machine learning–deep learning algorithms in ophthalmology,” Asia-Pacific Journal of Ophthalmology, vol. 8, no. 3, pp. 264–272, May 2019, doi: 10.22608/APO.2018479.

M. Haris, T. Pustaka, M. H. Diponegoro, S. Kusumawardani, and I. Hidayah, “Tinjauan Pustaka Sistematis: Implementasi Metode Deep Learning pada Prediksi Kinerja Murid (Implementation of Deep Learning Methods in Predicting Student Performance: A Systematic Literature Review),” 2021.

Q. Bi, K. E. Goodman, J. Kaminsky, and J. Lessler, “What is machine learning? A primer for the epidemiologist,” Am J Epidemiol, vol. 188, no. 12, pp. 2222–2239, Dec. 2019, doi: 10.1093/aje/kwz189.

S. Fifin Alamsyah, “IMPLEMENTASI DEEP LEARNING UNTUK KLASIFIKASI TANAMAN TOGA BERDASARKAN CIRI DAUN BERBASIS ANDROID,” Ubiquitous: Computers and its Applications Journal, vol. 2, no. 2, pp. 113–122, 2019.

P. Adi Nugroho, I. Fenriana, and R. Arijanto, “IMPLEMENTASI DEEP LEARNING MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK ( CNN ) PADA EKSPRESI MANUSIA,” JURNAL ALGOR, vol. 2, no. 1, 2020, [Online]. Available: https://jurnal.buddhidharma.ac.id/index.php/algor/index

S. Yuliany and A. Nur Rachman, “Implementasi Deep Learning pada Sistem Klasifikasi Hama Tanaman Padi Menggunakan Metode Convolutional Neural Network (CNN),” Jurnal Buana Informatika, vol. 13, no. 1, pp. 54–65, 2022.

V. S. Bawa and V. Kumar, “Linearized sigmoidal activation: A novel activation function with tractable non-linear characteristics to boost representation capability,” Expert Syst Appl, vol. 120, pp. 346–356, Apr. 2019, doi: 10.1016/j.eswa.2018.11.042.

M. R. R. Allaam, “KLASIFIKASI GENUS TANAMAN ANGGREK MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN),” 2021.

M. T. Ahad, Y. Li, B. Song, and T. Bhuiyan, “Comparison of CNN-based deep learning architectures for rice diseases classification,” Artificial Intelligence in Agriculture, vol. 9, pp. 22–35, Sep. 2023, doi: 10.1016/j.aiia.2023.07.001.

E. Rasywir, R. Sinaga, and Y. Pratama, “Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network (CNN),” Paradigma – Jurnal Informatika dan Komputer, vol. 22, no. 2, pp. 117–123, 2020, doi: 10.31294/p.v21i2.

R. Dhamayanti, M. F. Rohmah, and S. Zahara, “PENGGUNAAN DEEP LEARNING DENGAN METODE CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI KUALITAS SAYUR KOL BERDASARKAN CITRA FISIK,” Submit, vol. 1, no. 1, pp. 8–15, 2021, [Online]. Available: http://ejurnal.unim.ac.id/index.php/submit

S. Napitu, R. Paramita Panjaitan, P. A. Nulhakim, and M. Khalik Lubis, “Klasifikasi Buah Jeruk Segar dan Busuk Berdasarkan RGB dan HSV Menggunakan Metode KNN,” Jurnal SAINTEKOM, vol. 13, no. 2, pp. 214–221, Sep. 2023, doi: 10.33020/saintekom.v13i2.420.

Ryan Park, “Fruit Quality Classification.” Accessed: Aug. 05, 2024. [Online]. Available: https://www.kaggle.com/datasets/ryandpark/fruit-quality-classification/data

N. Augustien and N. Triani, “Effect of Organic Growth Regulator and Shade Percentage in The Cavendish Banana (Musa acuminata) Plantlet Acclimatization,” 2021.

M. Thakre, M. K. Verma, K. Singh, O. P. Awasthi, R. R. Sharma, and M. Ray, “Proposal and validation of colour index for Kinnow Mandarin (Citrus nobilis × Citrus deliciosa),” Indian Journal of Agricultural Sciences, vol. 88, no. 8, pp. 1179–1183, Aug. 2018, doi: 10.56093/ijas.v88i8.82521.

T. Yasmin, M. A. Islam, Q. F. Quadir, D. C. Joyce, and B. Bhandari, “Ripening quality of banana cv. Amritasagor through application of different ripening agents,” Archives of Agriculture and Environmental Science, vol. 6, no. 1, pp. 35–41, Mar. 2021, doi: 10.26832/24566632.2021.060105.

R. S. de Brito, R. A. Andrade, and R. de Carvalho Andrade Neto, “Fruit production and quality of sweet orange genotypes selected for the state of Acre, Brazil,” Revista Brasileirade Ciencias Agrarias, vol. 16, no. 2, 2021, doi: 10.5039/AGRARIA.V16I3A111.

Downloads

Published

2024-12-01

How to Cite

Lumban Batu, B. E. L. B., Saputra, W. A., & Sa’adah, A. (2024). Banana and Orange Classification Detection Using Convolutional Neural Network. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 13(3), 561–570. https://doi.org/10.23887/janapati.v13i3.80032

Issue

Section

Articles