Facial Expression Detection System for Students in Classroom Learning Process Using YoloV7
DOI:
https://doi.org/10.23887/janapati.v13i3.83978Keywords:
Facial Expression, YOLOv7, CNN, CNN MobileNet, CNN EfficientNet-B0Abstract
The utilization of technology in education is not only about using hardware or software, but also how technology can facilitate effective learning experiences. However, in the learning process there is a problem for teachers to know the level of student attention in the classroom to the material presented, so that the teacher does not know accurately the concentration of students during the learning process until it has an impact on the teacher's learning methods that are not in accordance with the characteristics of students. The purpose of this research is to detect students' facial expressions in the classroom learning process using yolov7. The implementation of several architectural models on CNN consists of several proposed methods, namely data collection, data augmentation, data annotation, split dataset, training, and model evaluation. System testing is done by measuring accuracy and comparing with other methods, namely CNN, CNN MobileNet, CNN EfficientNet-B0 and YoloV7. The test results show the average accuracy of CNN 80%, CNN MobileNet 93%, CNN EfficientNet-B0 31% and YoloV7 96%. Based on these results, it can be concluded that the YoloV7 method can detect student concentration effectively and efficiently compared to CNN, CNN MobileNet, and CNN EfficientNet-B0.
References
Z. Shou, M. Yan, H. Wen, J. Liu, J. Mo, dan H. Zhang, "Penelitian tentang Metode Pengenalan Perilaku Tindakan Siswa Berdasarkan Gambar Deret Waktu di Kelas," Ilmu Terapan (Swiss), vol. 13, no. 18, Sep. 2023, doi: 10.3390/app131810426.
D. Sadykova, D. Pernebayeva, M. Bagheri, dan A. James, "IN-YOLO: Deteksi Waktu Nyata Isolator Tegangan Tinggi di Luar Ruangan Menggunakan Pencitraan UAV," IEEE Transactions on Power Delivery, vol. 35, no. 3, pp. 1599-1601, 2020, doi: 10.1109/TPWRD.2019.2944741.
Z. Wang, L. Li, C. Zeng, dan J. Yao, "Pengenalan Perilaku Belajar Siswa yang Menggabungkan Augmentasi Data dengan Representasi Fitur Pembelajaran di Ruang Kelas Pintar," Sensor, vol. 23, no. 19, 2023, doi: 10.3390 / s23198190.
R. Vaishya, M. Javaid, I. Haleem, dan A. Haleem, "Aplikasi AI untuk pandemi Covid-19," no. Januari, 2020.
L. Liu dkk., "Pembelajaran Mendalam untuk Deteksi Objek Generik: A Survey," Int J Comput Vis, vol. 128, no. 2, hal. 261-318, 2020, doi: 10.1007/s11263-019-01247-4.
X. Ning, "Pengenalan Perilaku Mahasiswa Berdasarkan Peningkatan Algoritma Deep Learning," Jurnal Internasional Teknologi Pembelajaran dan Pengajaran Berbasis Web, vol. 18, no. 2, pp. 1-16, 2023, doi: 10.4018/ijwltt.320647.
Z. Ding, J. Guo, J. Liu, dan H. Zhu, "Algoritma pendeteksi pemakaian masker berdasarkan YOLOv7 yang ditingkatkan," ACM International Conference Proceeding Series, pp. 165-173, 2023, doi: 10.1145/3614008.3614032.
G. Wang, Y. Chen, P. An, H. Hong, J. Hu, dan T. Huang, "UAV-YOLOv8: Model Pendeteksian Objek Kecil Berdasarkan YOLOv8 yang Disempurnakan untuk Skenario Fotografi Udara UAV," Sensor, vol. 23, no. 16, 2023, doi: 10.3390/s23167190.
H. Zhao dkk., "Mixed YOLOv3-LITE: Metode deteksi objek waktu nyata yang ringan," Sensors (Swiss), vol. 20, no. 7, 2020, doi: 10.3390/s20071861.
M. Arava dan D. Meena Sundaram, "Jurnal Internasional SISTEM CERDAS DAN APLIKASI DALAM REKAYASA Meningkatkan Deteksi Kantuk Pengemudi: Perpaduan Landmark Wajah dan Arsitektur YOLOv5 yang Dimodifikasi," Makalah Penelitian Asli Jurnal Internasional Sistem Cerdas dan Aplikasi dalam Rekayasa IJISAE, vol. 2024, no. 11s, pp. 437-449, 2024.
Y. Yunefri, Sutejo, Y. E. Fadrial, K. Anggraini, M. Ramadhani, dan R. Hardianto, "Implementasi Pendeteksian Objek dengan Algoritma You Only Look Once pada Waktu Tatap Muka yang Terbatas di Masa Pandemi," Jurnal Rekayasa Terapan dan Ilmu Pengetahuan Teknologi, vol. 4, no. 1, hal. 400-404, 2022, doi: 10.37385/jaets.v4i1.1161.
I. A. Putra, "Analisis performa arsitektur model you only look once (yolo) versi 7 dalam melakukan segmentasi jenis virus dari citra mikroskop skripsi," 2023.
L. Susanti, N. K. Daulay, and B. Intan, "Sistem Absensi Mahasiswa Berbasis Pengenalan Wajah Menggunakan Algoritma YOLOv5," JURIKOM (Jurnal Riset Komputer), vol. 10, no. 2, p. 640, Apr. 2023, doi: 10.30865/jurikom.v10i2.6032.
Y. Liu dkk., "Metode Deteksi Batang untuk Robot Pemanen Buah Camellia oleifera Berdasarkan YOLOv7 yang Disempurnakan," Forests, vol. 14, no. 7, Jul. 2023, doi: 10.3390/f14071453.
C.-Y. Wang, H.-Y. M. Liao, and I.-H. Yeh, "Merancang Strategi Perancangan Jaringan Melalui Analisis Jalur Gradien," Nov. 2022, [Online]. Available: http://arxiv.org/abs/2211.04800
P. Jiang, D. Ergu, F. Liu, Y. Cai, dan B. Ma, "Tinjauan Perkembangan Algoritma Yolo," dalam Procedia Computer Science, Elsevier B.V., 2021, hlm. 1066-1073. doi: 10.1016 / j.procs.2022.01.135.
"Ditarik kembali: Deteksi COVID-19 Berdasarkan Pemindaian CT Scan Paru Menggunakan Teknik Deep Learning," Comput Math Methods Med, vol. 2023, hlm. 1-1, Oktober 2023, doi: 10.1155/2023/9840132.
K. Jiang dkk., "Algoritma Deteksi Objek YOLOv7 yang Ditingkatkan dengan Mekanisme Perhatian untuk Estimasi Jumlah Bebek Rami," Agriculture (Swiss), vol. 12, no. 10, Oct. 2022, doi: 10.3390/agriculture12101659.
C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, "YOLOv7: Trainable bag-of-freebies menetapkan state-of-the-art baru untuk pendeteksi objek waktu nyata," Juli 2022, [Online]. Tersedia: http://arxiv.org/abs/2207.02696
D. Hindarto, "Analisis Akurasi Model: Membandingkan Deteksi Gulma pada Tanaman Kedelai dengan EfficientNet-B0, B1, dan B2," Jurnal Teknologi Informasi dan Komunikasi), vol. 7, no. 4, p. 2023, 2023, doi: 10.35870/jti.
O. A. Barro, M. Himdi, dan O. Lafond, "Radiasi Antena Patch yang Dapat Dikonfigurasi Ulang Menggunakan Efek Perisai Faraday Plasma," IEEE Antennas Wirel Propag Lett, vol. 15, hal. 726-729, 2016, doi: 10.1109/LAWP.2015.2470525.
D. Sebagai dkk., "TUGAS AKHIR."
N. Adhayanti, T. Nugroho, and R. Susiloatmadja, "SISTEM PENDETEKSIAN WAJAH BERMASUK SECARA REAL TIME MENGGUNAKAN METODE CNN," JUIT, vol. 2, no. 1.
F. Hafifah, S. Rahman, and S. Asih, "Klasifikasi Jenis Kendaraan Pada Jalan Raya Menggunakan Metode Convolutional Neural Networks (CNN)," vol. 2, no. 5, pp. 292-301, 2021, [Online]. Available: https://ejurnal.seminar-id.com/index.php/tin
D. Hananta Firdaus, B. Imran, L. Darmawan Bakti, and E. Suryadi, "KLASIFIKASI PENYAKIT KATARAK PADA MATA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN) BERBASIS WEB," 2022.
D. Jha, MA Riegler, D. Johansen, P. Halvorsen, dan HD Johansen, "DoubleU-Net: Jaringan saraf konvolusi dalam untuk segmentasi citra medis," dalam Prosiding - Simposium IEEE tentang Sistem Medis Berbasis Komputer, Institut Insinyur Listrik dan Elektronik Inc, Jul. 2020, hlm. 558-564. doi: 10.1109 / CBMS49503.2020.00111.
F. Denta Sukma and R. Mukhaiyar, "Alat Pendeteksi Ekspresi Wajah pada Pengendara Berbasis Image Processing," JTEIN: Jurnal Teknik Elektro Indonesia, vol. 3, no. 2, pp. 364-373, 2022.
I. B. Venkateswarlu, J. Kakarla, dan S. Prakash, "Deteksi masker wajah menggunakan MobileNet dan blok penyatuan global," dalam Konferensi IEEE ke-4 tentang Teknologi Informasi dan Komunikasi, CICT 2020, Institute of Electrical and Electronics Engineers Inc.
W. Wang, Y. Hu, T. Zou, H. Liu, J. Wang, dan X. Wang, "Pendekatan Klasifikasi Gambar Baru melalui Model MobileNet yang Ditingkatkan dengan Perluasan Bidang Reseptif Lokal di Lapisan Dangkal," Comput Intell Neurosci, vol. 2020, 2020, doi: 10.1155 / 2020 / 8817849.
A. Fuadi dkk., "PERBANDINGAN ARSITEKTUR MOBILENET DAN NASNETMOBILE UNTUK KLASIFIKASI PENYAKIT PADA CITRA DAUN KENTANG."
K. Kusrini dkk., "Penambahan data untuk klasifikasi hama otomatis di perkebunan mangga," Comput Electron Agric, vol. 179, Dec. 2020, doi: 10.1016/j.compag.2020.105842.
S. Rahman and H. Dafitri, "Pengembangan Convolutional Neural Network untuk Klasifikasi Ketersediaan Ruang Parkir," Online.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Alifya Nuraisyar Aglaia, Mukhlishah Afdhaliyah, Fhatiah Adiba, Andi Baso Kaswar, Muhammad Fajar B, Dyah Darma Andayani, Muhammad Yahya
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Janapati agree to the following terms:- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)