Data Mining Analysis of Moodle Learning Data and Student Perceptions During and After the Covid-19 Pandemic

Authors

  • Chatarina Enny Murwaningtyas Sanata Dharma University
  • Maria Fatima Dineri De Jesus Sanata Dharma University

DOI:

https://doi.org/10.23887/janapati.v13i3.84005

Keywords:

Moodle Data, Student Perceptions, Decision Tree, Random Forest, Naïve Bayes

Abstract

This study examines the academic performance of students from the 2020 and 2023 cohorts, highlighting differences in activity, attendance, task completion, midterm and final exam scores, and perceptions of educational metrics. A data mining approach was applied to predict students' GPA using Decision Tree, Random Forest, Multinomial Naïve Bayes, and Gaussian Naïve Bayes algorithms. The Gaussian Naïve Bayes model showed the highest accuracy of 0.93 for the 2020 cohort and 0.92 for the 2023 cohort, with the lowest error rate making it the most effective predictor. Feature importance analysis revealed that task completion and exam scores were the most influential factors, while students' perceptions had a lesser impact. The findings suggest that direct academic metrics should be the focus for improving student performance. This study emphasizes the need for further refinement of predictive models and suggests incorporating both academic metrics and student perceptions for a holistic understanding of student performance.

References

D. Y. Irawati and J. Jonatan, “Evaluasi Kualitas Pembelajaran Online Selama Pandemi Covid-19: Studi Kasus di Fakultas Teknik, Universitas Katolik Darma Cendika,” Jurnal Rekayasa Sistem Industri, vol. 9, no. 2, 2020, doi: 10.26593/jrsi.v9i2.4014.135-144.

S. L. Nasution, F. Windari, S. Z. Harahap, and E. Elvina, “Pengaruh Media Pembelajaran Online Dalam Pemahaman Dan Minat Belajar Mahasiswa Pada Bidang Studi Akutansi Di Feb Universitas Labuhanbatu,” ECOBISMA (Jurnal Ekonomi, Bisnis Dan Manajemen), vol. 8, no. 1, 2021, doi: 10.36987/ecobi.v8i1.2068.

Y. S. Nuraeni and D. Irawati, “Growing Learning Motivation Through the Use of E- Learning Lms (Learning Management System) and Lecturer Competence,” Procuratio : Jurnal Ilmiah Manajemen, vol. 10, no. 3, 2022.

A. M. Al-Smadi, A. Abugabah, and A. Al Smadi, “Evaluation of E-learning Experience in the Light of the Covid-19 in Higher Education,” in Procedia Computer Science, Elsevier, Jan. 2022, pp. 383–389.

L. Vicent and M. Segarra, “Learning management system,” Multimedia in Education, pp. 21–48, 2010.

S. T. Sianturi and U. L. Yuhana, “Student Behaviour Analysis To Detect Learning Styles Using Decision Tree, Naïve Bayes, And K-Nearest Neighbor Method In Moodle Learning Management System,” IPTEK The Journal for Technology and Science, vol. 33, no. 2, pp. 94–104, Aug. 2022.

W. Widiyawati and Y. Anistyasari, “Studi Literatur Evaluasi Dan Pemeriksaan Fitur Alat Kuis Pada Learning Management System Berbasis Open Source,” IT-Edu : Jurnal Information Technology and Education, vol. 5, no. 01, pp. 512–519, 2020.

E. O. Istiqomah, A. Atiqoh, and Suhari, “Pengembangan Elkid Sebagai LMS Dengan Model Blended Learning di Era New Normal,” Jurnal Teknologi Pendidikan : Jurnal Penelitian dan Pengembangan Pembelajaran, vol. 8, no. 1, pp. 100–110, Jan. 2023, Accessed: Jan. 29, 2024. [Online]. Available: https://e-journal.undikma.ac.id/index.php/jtp/article/view/6219

H. Dhika, F. Destiawati, M. Sonny, and Surajiyo, “Ease Evaluation Using the Best Moodle Learning Management System with Data Mining Concepts,” in 3rd International Conference on Learning Innovation and Quality Education, Atlantis Press, Feb. 2020, pp. 944–952.

E. Ikhsan, “Penerapan K-Means Clustering dari Log Data Moodle untuk Menentukan Perilaku Peserta pada Pembelajaran Daring,” Sistemasi: Jurnal Sistem Informasi, vol. 10, no. 2, pp. 414–422, May 2021.

K. Lavidas et al., “Predicting the Behavioral Intention of Greek University Faculty Members to Use Moodle,” Sustainability, vol. 15, no. 7, p. 6290, 2023.

C. J. Chen, H. J. Tsai, M. Y. Lee, Y. C. Chen, and S. M. Huang, “Effects of a Moodle-based E-learning environment on E-collaborative learning, perceived satisfaction, and study achievement among nursing students: A cross-sectional study,” Nurse Educ Today, vol. 130, 2023, doi: 10.1016/j.nedt.2023.105921.

E. Romero, L. García, and J. Ceamanos, “Moodle and Socrative quizzes as formative aids on theory teaching in a chemical engineering subject,” Education for Chemical Engineers, vol. 36, 2021, doi: 10.1016/j.ece.2021.03.001.

H. Suparwito, “Student Perceptions and Achievements of Online Learning: Machine Learning Approaches,” in AIP Conference Proceedings, 2022. doi: 10.1063/5.0103688.

G. Akçapinar and A. Bayazit, “Moodleminer: Data mining analysis tool for moodle learning management system,” Elementary Education Online, vol. 18, no. 1, 2019, doi: 10.17051/ilkonline.2019.527645.

J. Calderon-Valenzuela, K. Payihuanca-Mamani, and N. Bedregal-Alpaca, “Educational Data Mining to Identify the Patterns of Use made by the University Professors of the Moodle Platform,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 1, 2022, doi: 10.14569/IJACSA.2022.0130140.

S. M. Dol and P. M. Jawandhiya, “Classification Technique and its Combination with Clustering and Association Rule Mining in Educational Data Mining — A survey,” 2023. doi: 10.1016/j.engappai.2023.106071.

M. M. Tamada, R. Giusti, and J. F. de M. Netto, “Predicting Students at Risk of Dropout in Technical Course Using LMS Logs,” Electronics (Switzerland), vol. 11, no. 3, 2022, doi: 10.3390/electronics11030468.

A. Kika, L. Leka, S. Maxhelaku, and A. Ktona, “Using Data Mining Techniques on Moodle Data for Classification of Student’s Learning Styles,” 2019. doi: 10.20472/iac.2019.047.010.

C. N. Egwim, H. Alaka, L. O. Toriola-Coker, H. Balogun, and F. Sunmola, “Applied artificial intelligence for predicting construction projects delay,” Machine Learning with Applications, vol. 6, p. 100166, Dec. 2021, doi: 10.1016/j.mlwa.2021.100166.

R. Malhotra and M. Cherukuri, “Software Defect Categorization based on Maintenance Effort and Change Impact using Multinomial Naïve Bayes Algorithm,” in 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 2020, pp. 1068–1073. doi: 10.1109/ICRITO48877.2020.9198037.

D. M. W. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation,” arXiv preprint arXiv:2010.16061, 2020.

S. Shrestha and M. Pokharel, “Educational data mining in moodle data,” International Journal of Informatics and Communication Technology (IJ-ICT), vol. 10, no. 1, 2021, doi: 10.11591/ijict.v10i1.pp9-18.

“RobustScaler — scikit-learn 1.5.1 documentation.” Accessed: Aug. 06, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html

“MinMaxScaler — scikit-learn 1.5.1 documentation.” Accessed: Aug. 06, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

N. V Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique,” 2002.

A. Fernández, S. García, M. Galar, R. C. Prati, B. Krawczyk, and F. Herrera, Learning from imbalanced data sets, vol. 10, no. 2018. Springer, 2018.

H. Marlisa, N. Satyahadewi, N. Imro’ah, and N. N. Debataraja, “Application of ADASYN Oversampling Technique on K-Nearest Neighbor Algorithm,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 18, no. 3, pp. 1829–1838, Jul. 2024, doi: 10.30598/BAREKENGVOL18ISS3PP1829-1838.

J. Guo, H. Wu, X. Chen, and W. Lin, “Adaptive SV-Borderline SMOTE-SVM algorithm for imbalanced data classification,” Applied Soft Computing Journal, vol. 150, 2024, doi: 10.24433/CO.4255147.v1.

Z. Shao and M. J. Er, “Efficient Leave-One-Out Cross-Validation-based Regularized Extreme Learning Machine,” Neurocomputing, vol. 194, pp. 260–270, Jun. 2016, doi: 10.1016/j.neucom.2016.02.058.

J. H. Fan, X. Y. Li, and S. H. Teng, “Research on spam message recognition algorithm based on improved naive Bayes,” in Proceedings - 2022 International Conference on Intelligent Transportation, Big Data and Smart City, ICITBS 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 241–244. doi: 10.1109/ICITBS55627.2022.00059.

M. L. Fotteler et al., “Use and benefit of information, communication, and assistive technology among community-dwelling older adults–a cross-sectional study,” BMC Public Health, vol. 23, no. 1, p. 2004, 2023.

Downloads

Published

2024-12-01

How to Cite

Murwaningtyas, C. E., & De Jesus, M. F. D. (2024). Data Mining Analysis of Moodle Learning Data and Student Perceptions During and After the Covid-19 Pandemic. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 13(3), 506–519. https://doi.org/10.23887/janapati.v13i3.84005

Issue

Section

Articles