Correlation Analysis Approach Between Features and Motor Movement Stimulus for Stroke Severity Classification of EEG Signal Based on Time Domain, Frequency Domain, and Signal Decomposition Domain

Authors

  • Marcelinus Yosep Teguh Sulistyono Departement of Electrical Engineering, Institut Teknologi Sepuluh Nopember
  • Evi Septiana Pane Industrial Training and Education of Surabaya, Ministry of Industry RI
  • Eko Mulyanto Yuniarno Institut Teknologi Sepuluh Nopember
  • Mauridhi Hery Purnomo Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.23887/janapati.v13i3.85550

Keywords:

Correlation Analysis, Motoric Movement Stimulus, EEG Signal, Stroke Severity

Abstract

The healing process of a stroke necessitates tools for measuring relevant parameters to facilitate monitoring, evaluation, and medical rehabilitation. Accurate parameter measures can be observed in stroke patients' severity to ascertain suitable interventions by identifying components pertinent to monitoring, evaluation, and medical rehabilitation. The components are derived from the observation collection process utilizing an EEG device, accompanied by a motor stimulus, to ensure the acquisition of EEG signals for monitoring, evaluation, and medical rehabilitation while preventing any loss of information during data collection. The acquired information encounters challenges due to the signal's unstable, nonlinear, and non-stationary characteristics, necessitating efforts to stabilize, render stationary, and linearize it through suitable signal processing and feature extraction techniques to achieve a pertinent feature composition. The subsequent difficulty is achieving the objectives of medical monitoring, evaluation, and rehabilitation, necessitating the correlation between EEG signal characteristics and motor movement stimuli, ensuring that the process adheres to appropriate parameter identification and scheduling per the established plan. In response to this difficulty, a correlation analysis methodology is established, incorporating normalcy tests, significance tests, and correlation analysis to ensure that the relevant factors for identifying stroke severity categorization patterns are precisely identified beforehand. The correlation analysis strategy employs raw data situations, preprocessing, feature extraction, feature selection, and correlation analysis for classification purposes. Our experimental findings indicate that the correlation analysis approach for assessing stroke severity classification patterns is evident in the Hajorth Complexity feature, utilizing the Shoulder motor movement stimulus and the SVM classification type, achieving an accuracy significant value of 98%. These findings confirm the efficacy of correlation analysis between EEG signal features and motor movement stimuli in identifying the optimal parameters within a reduced dimensional space to assess stroke severity effectively.

References

Ospel, Johanna M. Rinkel, Leon Ganesh, Aravind Demchuk, Andrew Heran, Manraj Sauvageau, Eric Joshi, Manish Haussen, Diogo Jayaraman, Mahesh Coutts, Shelagh Yu, Amy Puetz, Volker Iancu, Dana Bang, Oh Young Tarpley, Jason Holmin, Staffan Kelly, Michael Tymianski, Michael Hill, Michael Goyal, and Mayank, “How Do Quantitative Tissue Imaging Outcomes in Acute Ischemic Stroke Relate to Clinical Outcomes?,” J. Stroke, vol. 26, no. 2, pp. 252–259, 2024.

Feigin, Valery L. Brainin, Michael Norrving, Bo Martins, Sheila Sacco, Ralph L. Hacke, Werner Fisher, Marc Pandian, Jeyaraj Lindsay, and Patrice, “World Stroke Organization (WSO): Global Stroke Fact Sheet 2022,” Int. J. Stroke, vol. 17, no. 1, pp. 18–29, 2022.

N. K. Al-Qazzaz, A. A. Aldoori, S. H. B. M. Ali, S. A. Ahmad, A. K. Mohammed, and M. I. Mohyee, “EEG Signal Complexity Measurements to Enhance BCI-Based Stroke Patients’ Rehabilitation,” Sensors, vol. 23, no. 8, 2023.

P. Ofner, A. Schwarz, J. Pereira, D. Wyss, R. Wildburger, and G. R. Müller-Putz, “Attempted Arm and Hand Movements can be Decoded from Low-Frequency EEG from Persons with Spinal Cord Injury,” Sci. Rep., vol. 9, no. 1, pp. 1–15, 2019.

Winstein, Carolee J. Stein, Joel Arena, Ross Bates, Barbara Cherney, Leora R. Cramer, Steven C. Deruyter, Frank Eng, Janice J. Fisher, Beth Harvey, Richard L. Lang, Catherine E. MacKay-Lyons, Marilyn Ottenbacher, Kenneth J. Pugh, Sue Reeves, Mathew J. Richards, Lorie G. Stiers, William Zorowitz, and Richard D, Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association, vol. 47, no. 6. 2016.

de Azevedo, Joyce Araújo Barbosa, Felipe Douglas Silva Seixas, Valquiria Martins da Silva Scipioni, Kelly Regina Dias Sampaio, Priscila Yukari Sewo da Cruz, Daniel Marinho Cezar Piscitelli, Daniele Chui, Kevin K. de Freitas Zanona, and Aristela, “Effects of constraint-induced movement therapy on activity and participation after a stroke: Systematic review and meta-analysis,” Front. Hum. Neurosci., vol. 16, no. December, pp. 1–11, 2022.

M. Soufineyestani, D. Dowling, and A. Khan, “Electroencephalography (EEG) technology applications and available devices,” Appl. Sci., vol. 10, no. 21, pp. 1–23, 2020.

H. Setiawan, W. R. Islamiyah, A. D. Wibawa, and M. H. Purnomo, “Identifying EEG Parameters to Monitor Stroke Rehabilitation using Individual Analysis,” Proc. - 2019 Int. Semin. Intell. Technol. Its Appl. ISITIA 2019, pp. 337–342, 2019.

M. M. Hartanti, A. D. Wibawa, and M. H. Purnomo, “Homecare and Hospital Stroke Therapy Comparison Using EEG Analysis,” Int. Electron. Symp. 2021 Wirel. Technol. Intell. Syst. Better Hum. Lives, IES 2021 - Proc., pp. 179–184, 2021.

M. H. P. Rosita Devi Kusumastuti, Adhi Dharma Wibawa, “Stroke Severity Classification based on EEG Statistical Features,” pp. 138–142, 2021.

S. Krishnan and Y. Athavale, “Trends in biomedical signal feature extraction,” Biomed. Signal Process. Control, vol. 43, pp. 41–63, 2018.

N. Biswas, K. M. M. Uddin, S. T. Rikta, and S. K. Dey, “A comparative analysis of machine learning classifiers for stroke prediction: A predictive analytics approach,” Healthc. Anal., vol. 2, no. August, p. 100116, 2022.

J. L. Kästle, B. Anvari, J. Krol, and H. A. Wurdemann, “Correlation between Situational Awareness and EEG signals,” Neurocomputing, vol. 432, pp. 70–79, 2021.

R. Irianto, “Analisis Korelasi Domain Frekuensi Gelombang Otak Dengan Stimulasi Sumber Suara/Musik Menggunakan Electroencephalograph (EEG),” ReTII, vol. 2019, no. November, pp. 243–250, 2019.

Omar, W.R.W. Taib, M.N. Jailani, R. Fuad, N. Isa, R.M. Jahidin, A.H. and Sharif, Z., “Acute Ischemic Stroke Brainwave Classification Using Relative Power Ratio Cluster Analysis,” Procedia - Soc. Behav. Sci., vol. 97, pp. 546–552, 2013.

N. R. Sims and H. Muyderman, “Mitochondria, oxidative metabolism and cell death in stroke,” Biochim. Biophys. Acta - Mol. Basis Dis., vol. 1802, no. 1, pp. 80–91, 2010.

A. W. de Weerd, R. J. Veldhuizen, M. M. Veering, D. C. J. Poortvliet, and E. J. Jonkman, “Recovery from cerebral ischaemia. EEG, cerebral blood flow and clinical symptomatology in the first three years after a stroke,” Electroencephalogr. Clin. Neurophysiol., vol. 70, no. 3, pp. 197–204, 1988.

J. J. M. F. Van Der Putten, J. C. Hobart, J. A. Freeman, and A. J. Thompson, “Measuring change in disability after inpatient rehabilitation: Comparison of the responsiveness of the Barthel Index and the Functional Independence Measure,” J. Neurol. Neurosurg. Psychiatry, vol. 66, no. 4, pp. 480–484, 1999.

H. S. Jørgensen, H. Nakayama, H. O. Raaschou, J. Vive-Larsen, M. Støier, and T. S. Olsen, “Outcome and time course of recovery in stroke. Part I: Outcome. The Copenhagen stroke study,” Arch. Phys. Med. Rehabil., vol. 76, no. 5, pp. 399–405, 1995.

H. F. Posada-Quintero, N. Reljin, J. B. Bolkhovsky, A. D. Orjuela-Cañón, and K. H. Chon, “Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation,” Front. Neurosci., vol. 13, no. September, pp. 1–9, 2019.

Downloads

Published

2024-12-01

How to Cite

Sulistyono, M. Y. T., Pane, E. S., Yuniarno, E. M., & Purnomo, M. H. (2024). Correlation Analysis Approach Between Features and Motor Movement Stimulus for Stroke Severity Classification of EEG Signal Based on Time Domain, Frequency Domain, and Signal Decomposition Domain. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 13(3), 597–611. https://doi.org/10.23887/janapati.v13i3.85550

Issue

Section

Articles