Progresivitas Kecerdasan Buatan dalam Perspektif Epistemologi

Progressiveness of Artificial Intelligence in Epistemological Perspective

Penulis

  • Mellyzar Universitas Pendidikan Indonesia
  • Nahadi Universitas Pendidikan Indonesia
  • Desi Aryanti Nabuasa Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.23887/jfi.v7i3.78214

Kata Kunci:

artificial intelligence, epistemologi, AI

Abstrak

Kecerdasan buatan atau Artificial Intelligence (AI) berkembang dengan pesat serta peningkatan ketergantungan pada teknologi AI ini membawa sejumlah keuntungan, seperti peningkatan efisiensi, personalisasi yang lebih baik, dan pengambilan keputusan yang lebih pintar. Tetapi, semakin besar ketergantungan ini juga menimbulkan kekhawatiran terhadap landasan epistemologis AI. Tujuan penelitian ini mengkaji secara epistemologi pengembangan AI dengan metode penelitian kualitatif dengan menggunakan pendekatan studi literatur. AI adalah kombinasi ilmu dan teknologi. Sumber-sumber pengetahuan klasik seperti pengalaman indrawi, rasionalitas, dan kesaksian tetap menjadi landasan penting dalam upaya manusia untuk memahami realitas, meskipun kecerdasan buatan menawarkan alat yang canggih untuk menganalisis data dan membuat prediksi. Pengetahuan yang dihasilkan oleh kecerdasan buatan bersifat kompleks dan beragam tergantung pada konteks dan jenis sistem yang digunakan. Algoritma AI yang kompleks dan terkadang "kotak hitam" membuatnya sulit untuk memahami bagaimana kecerdasan buatan mencapai kesimpulan tertentu, menimbulkan pertanyaan tentang validitas dan keandalan pengetahuannya. Oleh karena itu, memahami cara kerja AI, mengevaluasi sumber, membandingkannya dengan sumber lainnya, dan menggunakan akal sehat adalah penting saat menganalisis data AI.

Referensi

Adam, M., Wessel, M., & Benlian, A. (2021). AI-Based Chatbots in Customer Service and Their Effects on User Compliance. Electronic Markets, 31(2), 427–445. https://doi.org/10.1007/s12525-020-00414-7.

Agarwal, S., Agarwal, B., & Gupta, R. (2022). Chatbots and Virtual Assistants: a bibliometric Analysis. Library Hi Tech, 40(4), 1013–1030. https://doi.org/10.1108/LHT-09-2021-0330

Agrawal, R., Majumdar, A., Kumar, A., & Luthra, S. (2023). Integration of Artificial Intelligence in Sustainable Manufacturing: Current Status and Future Opportunities. Operations Management Research, 16(4), 1720–1741. https://doi.org/10.1007/s12063-023-00383-y.

Ali Zaiter, W. (2018). The Impact of John Locke’s Tabula Rasa and Kant’s Faculty of Intuition on the Poetry of Wordsworth, Coleridge, and Keats: Implications and Applications. AWEJ for Translation & Literary Studies, 2(3), 31–42. https://doi.org/10.24093/awejtls/vol2no3.3.

Bahoo, S., Cucculelli, M., Goga, X., & Mondolo, J. (2024). Artificial intelligence in Finance: a Comprehensive Review Through Bibliometric and Content Analysis. SN Business & Economics, 4(2), 1–46. https://doi.org/10.1007/s43546-023-00618-x.

Berdasco, A., López, G., Diaz, I., Quesada, L., & Guerrero, L. A. (2019). User experience Comparison of Intelligent Personal Assistants: Alexa, Google Assistant, Siri and Cortana. Proceedings of 13th International Conference on Ubiquitous Computing and Ambient Intelligence UCAmI 2019), 31(1), 1–8. https://doi.org/10.3390/proceedings2019031051.

Berg, M., & Hudson, P. (1992). Rehabilitating the industrial revolution 1. The Economic History Review, 45(1), 24–50. https://doi.org/10.1111/j.1468-0289.1992.tb01290.x

Bergman, M. K. (2018). Information, Knowledge, Representation. Springer, Cham. https://doi.org/10.1007/978-3-319-98092-8_2.

Birkstedt, T., Minkkinen, M., Tandon, A., & Mäntymäki, M. (2023). AI Governance: Themes, Knowledge Gaps and Future Agendas. Internet Research, 33(7), 133–167. https://doi.org/10.1108/INTR-01-2022-0042.

Bland, S. (2018). Foundationalism and Coherentism. In Epistemic Relativism and Scepticism. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-94673-3_4.

Bonino, G., Maffezioli, P., & Tripodi, P. (2021). Logic in Analytic Philosophy: A Quantitative Analysis. Synthese, 198, 10991–11028. https://doi.org/10.1007/s11229-020-02770-5.

BonJour, L. (2017). The Dialectic of Foundationalism and Coherentism. In The Blackwell Guide to Epistemology (pp. 117–142). https://doi.org/10.1002/9781405164863.ch4.

Brandon, D., Erdenebileg, S., Chimgee, D., Enerel, A., & Bilguun, A. (2019). The Impact of AI on Work. Journal of Business and Innovation, 5(4), 48–61.

Bronkhorst, H., Roorda, G., Suhre, C., & Goedhart, M. (2020). Logical Reasoning in Formal and Everyday Reasoning Tasks. International Journal of Science and Mathematics Education, 18, 1673–1694. https://doi.org/10.1007/s10763-019-10039-8.

Caruso, L. (2018). Digital Innovation and the Fourth Industrial Revolution: Epochal Social

Changes? Ai & Society, 33(3), 379–392. https://doi.org/10.1007/s00146-017-0736-1. Chappell, T. (2012). Varieties of Knowledge in Plato and Aristotle. Topoi, 31, 175–190. https://doi.org/10.1007/s11245-012-9125-z.

Cheung, K. K. C., Long, Y., Liu, Q., & Chan, H.-Y. (2024). Unpacking Epistemic Insights of Artificial Intelligence (AI) in Science Education: A Systematic Review. Science & Education. https://doi.org/10.1007/s11191-024-00511-5.

Clark, G. (2010). Industrial Revolution. In Economic Growth (pp. 148–160). Palgrave Macmillan UK. https://doi.org/10.1057/9780230280823_22.

Craig, E. (1976). Sensory Experience and the Foundations of Knowledge. Synthese, 33(1), 1–24. Croce, M. (2022). On TestimoniKnowledge and its Functions. 200(2), 141. Synthese, 200(141), 1–21. https://doi.org/10.1007/s11229-022-03528-x.

Cui, Y., & van Esch, P. (2023). Artificial Intelligence in Customer Service Strategy for Seamless Customer Experiences. Artificial Intelligence in Customer Service: The next Frontier for Personalized Engagement, 73–97. https://doi.org/10.1007/978-3-031-33898-4_4.

Dogaru, L. (2020). The Main Goals of the Fourth Industrial Revolution. Renewable Energy Perspectives. Procedia Manufacturing, 46, 397–401. https://doi.org/10.1016/j.promfg.2020.03.058.

Duschinsky, R. (2012). Tabula Rasa and Human Nature. Philosophy, 87(4), 509–529. https://doi.org/10.1017/S0031819112000393.

Elbasi, E., Zaki, C., Topcu, A. E., Abdelbaki, W., Zreikat, A. I., Cina, E., & Saker, L. (2023). Crop Prediction Model Using Machine Learning Algorithms. Applied Sciences, 13(16), 1–20. https://doi.org/10.3390/app13169288.

Firman, H. (2019). Pengantar Filsafat Ilmu Pengetahuan Alam. Program Studi Pendidikan Ilmu Pengetahuan Alam, Sekolah Pascasarjana UPI.

Gobo, G., & Marcheselli, V. (2021). Epistemology: The Foundations of Scientific Knowledge. In Science, Technology and Society: An Introduction (Vol. 71, Issue 1, pp. 35–51). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-08306-8_3.

Habil, S., El-Deeb, S., & El-Bassiouny, N. (2023). AI-Based Recommendation Systems: The Ultimate Solution for Market Prediction and Targeting. The Palgrave Handbook of Interactive Marketing, 683–704. https://doi.org/10.1007/978-3-031-14961-0_30.

Hamid, N. (2022). Reason in Kant’s Theory of Cognition. Canadian Journal of Philosophy, 52(6), 636–653. https://doi.org/10.1017/can.2023.3.

Hasper, P. S., & Yurdin, J. (2014). Between Perception and Scientific Knowledge: Aristotle’s Account of Experience. In Oxford Studies in Ancient Philosophy, (Vol. 47, pp. 119–150). Oxford University Press. https://doi.org/9780198722717.003.0004.

Hassija, V., Chamola, V., Mahapatra, A., Singal, A., Goel, D., Huang, K., Scardapane, S., Spinelli, I., Mahmud, M., & Hussain, A. (2024). Interpreting Black-Box Models: a Review on Explainable Artificial Intelligence. Cognitive Computation Cognitive Computation, 16(1), 45–74. https://doi.org/10.1007/s12559-023-10179-8.

Humphreys, D. (2020). Mining Productivity and the Fourth Industrial Revolution. Mineral Economics, 33(1), 115–125. https://doi.org/10.1007/s13563-019-00172-9.

Jerath, K. S. (2021). The First and Second Industrial Revolution. Science. In Technology and Modernity: An Interdisciplinary Approach (pp. 103–118). Springer, Cham. https://doi.org/10.1007/978-3-030-80465-7_6.

Jones, N. (2024, April 15). AI Now Beats Humans at Basic Tasks — New Benchmarks Are Needed, Says Major Report. Stanford University’s 2024 AI Index Charts the Meteoric Rise of Artificial-Intelligence Tools. https://www.nature.com/articles/d41586-024-01087-4.

Khamim, S., Ahida, R., Muslimah, M., & Muyassaroh, I. K. (2024). Sumber-Sumber Pengetahuan dalam Filsafat Ilmu. Jurnal Pendidikan Tambusai, 8(1), 4940–4947. https://doi.org/10.31004/jptam.v8i1.13151.

King, R. (2022). The Utility of Pragmatism in Educational Research. Creative Education, 13(10), 3153–3161. https://doi.org/10.4236/ce.2022.1310199.

Kirchner, F. (2020). AI-perspectives: the Turing option. AI Perspectives, 2(1), 1–12. https://doi.org/10.1186/s42467-020-00006-3.

Lau, C. F. (2019). Hegel’s Critique of Foundationalism and Its Implications for Husserl’s Dream of Rigorous Science. In Hegel and Phenomenology (pp. 61–75). https://doi.org/10.1007/978-3-030-17546-7_4.

Lee, H. S., & Lee, J. (2021). Applying Artificial Intelligence in Physical Education and Future Perspectives. Sustainability, 13(1), 1–16. https://doi.org/10.3390/su13010351.

Li, J., Bao, H., Han, X., Pan, F., Pan, W., Zhang, F., & Wang, D. (2017). Real-Time Self-DrivingCar Navigation and Obstacle Avoidance Using Mobile 3D Laser Scanner and GNSS.Multimedia Tools and Applications, 76, 23017–23039. https://doi.org/10.1007/s11042-016-4211-7.

List, A., Peterson, E. G., Alexander, P. A., & Loyens, S. M. (2018). The Role of Educational Context In Beliefs About Knowledge, Information, and Truth: an Exploratory Study. European Journal of Psychology of Education, 33, 685–705. https://doi.org/10.1007/s10212-017-0359-4.

Lu, C. (2024). Rethinking Artificial Intelligence from the Perspective of Interdisciplinary Knowledge Production. Ai & Society, 28(3), 1–2. https://doi.org/10.1007/s00146-023-01839-2.

Marcus, W., & Watkins, E. (2020). Kant on Cognition and Knowledge. Synthese, 197(8), 3195–3213. https://doi.org/10.1007/s11229-017-1624-4.

McCleery, I. (2009). A Sense of the Past: Exploring Sensory Experience in the Pre-Modern World. Brain, 132(4), 1112–1117. https://doi.org/10.1093/brain/awp020.

Modrak, D. (2020). Internal Senses and Aristotle’s Cognitive Theory. In The Internal Senses in the Aristotelian Tradition, 17–28. Springer, Cham. https://doi.org/10.1007/978-3-030-33408-6_2.

Moran, S. (2013). Knowledge from Testimony: Benefits and Dangers. Journal of Philosophy of Education, 47(3), 323–340. https://doi.org/10.1111/1467-9752.12001.

O’Brien, D. (2021). Humeanism and the epistemology of testimony. Synthese, 99, 2647–2669. https://doi.org/10.1007/s11229-020-02905-8.

Okunlola, J. O., Naicker, S. R., & Uleanya, C. (2024). Digital Leadership in the Fourth Industrial Revolution Enacted During the COVID-19 Pandemic: a Systematic Review. Cogent Education, 11(1), 1–12. https://doi.org/10.1080/2331186X.2024.2317258.

Pabubung, M. R. (2021). Epistemologi Kecerdasan Buatan (AI) dan Pentingnya Ilmu Etika dalam Pendidikan Interdisipliner. Jurnal Filsafat Indonesia, 4(2), 152–159. https://doi.org/10.23887/jfi.v4i2.34734.

Patil, P., Athavale, P., Bothara, M., Tambolkar, S., & Morea, A. (2023). Crop Selection and Yield Prediction using Machine Learning Approach. Current Agriculture Research Journal, 11(3), 968–980. https://doi.org/10.12944/CARJ.11.3.26.

Peterson, A. J. (2024). AI and the Problem of Knowledge Collapse. ArXiv Preprint ArXiv:2404.03502, 2, 1–38. https://doi.org/10.48550/arXiv.2404.03502.

Rawas, S. (2024). AI: the Future of Humanity. Discover Artificial Intelligence, 4(1), 1–14. https://doi.org/10.1007/s44163-024-00118-3.

Reddy, S. (2024). Generative AI in Healthcare: an Implementation Science Informed Translational Path on Application, Integration and Governance. Implementation Science, 19(1), 1–15. https://doi.org/10.1186/s13012-024-01357-9.

Rosenberg, N., & Trajtenberg, M. (2004). A General-Purpose Technology At Work: The Corliss Steam Engine In The Late-Nineteenth-Century United States. The Journal of Economic History, 64(1), 61–99. https://doi.org/10.1017/S0022050704002608

Russo, F., Schliesser, E., & Wagemans, J. (2023). Connecting Ethics and Epistemology of AI. Ai & Society, 28(3), 1–19. https://doi.org/10.1007/s00146-022-01617-6.

Savitri, A. (2019). Revolusi Industri 4.0: Mengubah Tantangan Menjadi Peluang di Era Disrupsi 4.0. Genesis.

Scaltsas, T. (2012). Knowledge as ‘True Belief Plus Individuation’in Plato. Topoi, 31, 137–149. https://doi.org/10.1007/s11245-012-9148-5.

Stango, M. (2023). History and the Manifestation of the Good in Plato’s Republic. Philosophies, 8(2), 1--28. https://doi.org/10.3390/philosophies8020037.

Tien, J. M. (2012). The Next Industrial Revolution: Integrated Services and Goods. Journal of Systems Science and Systems Engineering, 21, 257–296. https://doi.org/10.1007/s11518-012-5194-1.

Tubbs, N. (2023). Re-Educating Thinking: Philosophy, Education, and Pragmatism. Journal of Philosophy of Education, 57(2), 433–443. https://doi.org/10.1093/jopedu/qhad031.

Tulshan, A. S., & Dhage, S. N. (2019). Survey on Virtual Assistant: Google assistant, Siri, Cortana, Alexa. Advances in Signal Processing and Intelligent Recognition Systems: 4th International Symposium SIRS 2018. Springer Singapore, 190–201. https://doi.org/10.1007/978-981-13-5758-9_17.

Uddin, M. N. (2019). Cognitive Science and Artificial Intelligence: Simulating the Human Mind and its Complexity. Cognitive Computation and Systems, 1(4), 113–116. https://doi.org/10.1049/ccs.2019.0022.

Uzunkaya, S. Ş. (2020). From the First Industrial Revolution to Industry 4.0: Changes in Innovative Work Behaviours and Effects on The Global Economies. In Strategic Outlook for Innovative Work Behaviours: Interdisciplinary and Multidimensional Perspectives (pp. 207–219). Springer, Cham. https://doi.org/10.1007/978-3-030-50131-0_12.

van Assen, M., Muscogiuri, E., Tessarin, G., & De Cecco, C. N. (2022). Artificial intelligence: A Century-Old Story. In Artificial Intelligence in Cardiothoracic Imaging (pp. 3–13). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-92087-6_1

Vorras, A., & Mitrou, L. (2021). Unboxing the Black Box of Artificial Intelligence: Algorithmic Transparency and/or a Right to Functional Explainability. EU Internet Law in the Digital Single Market, 247–264. https://doi.org/10.1007/978-3-030-69583-5_10.

Wan, J., Cai, H., & Zhou, K. (2015). Industrie 4.0: Enabling Technologies. International Conference on Intelligent Computing and Internet of Things, 135–140. https://doi.org/10.1109/ICAIOT.2015.7111555.

Wilson, F. (2010). Hume and the Role of Testimony in Knowledge. Episteme, 7(1), 58–78. https://doi.org/10.3366/E1742360009000811.

Wiryany, D., Natasha, S., & Kurniawan, R. (2022). Perkembangan Teknologi Informasi dan Komunikasi terhadap Perubahan Sistem Komunikasi Indonesia. Jurnal Nomosleca, 8(2), 242–252.

Yuniarthe, Y. (2018). Application of Artificial Intelligence (AI) in Search Engine Optimization (SEO). 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT). https://doi.org/10.1109/ICSIIT.2017.15.

Zhai, Y., Zhang, L., & Yu, M. (2024). AI in Human Resource Management: Literature Review and Research Implications. Journal of the Knowledge Economy. https://doi.org/10.1007/s13132-023-01631-z.

Zhang, C., Yang, J., Zhang, C., & Yang, J. (2020). Second Industrial Revolution. In A history of Mechanical Engineering (pp. 137–195). Springer, Singapore. https://doi.org/10.1007/978-981-15-0833-2_5.

Zhang, E. Y., Cheok, A. D., Pan, Z., Cai, J., & Yan, Y. (2023). From Turing to Transformers: A Comprehensive Review and Tutorial on the Evolution and Applications of Generative Transformer Models. Sci, 5(4), 1–26. https://doi.org/10.3390/sci5040046.

Zhang, Q., Lu, J., & Jin, Y. (2021). Artificial Intelligence in Recommender Systems. Complex & Intelligent Systems, 7(1), 439–457. https://doi.org/10.1007/s40747-020-00212-w.

Zhuang, Q. (2024). The Journey of Energy Transition. In From Coal to Hydrogen: A Long Journey of Energy Transition (pp. 225–238). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-55586-2_14.

Unduhan

Diterbitkan

2024-09-30

Terbitan

Bagian

Articles