• Luh Putu Budi Yasmini FMIPA Universitas Pendidikan Ganesha
  • Muhammad Rizki Fauzi Universitas Pendidikan Ganesha
  • Nurfa Risha Universitas pendidikan Ganesha
  • I Gede Aris Gunadi Universitas pendidikan Ganesha


virus, elasticity constants, HIV-1 (mature), and HIV-1 (immature)


One of the characteristics of viruses is the stiffness of the virus shell. In the following review, the virus shell can be assumed to be a spring. The value of stiffness of the virus shell is different for various viruses depending on intrinsic properties (i.e. modulus of elasticity) and extrinsic properties (i.e. radius and thickness of the virus shell). In this paper, we analyze the value of stiffness of the virus shell by analytical dan simulation. The analytical method is based on plate and shell theory and Michell solution. The other, the simulation is based on finite element analysis (FEA) method. We examine the elasticity constants of two types of viruses, namely HIV-1 (mature) and HIV-1 (immature) viruses. It was found that the HIV-1 virus (mature) had a smaller elasticity constant than the elasticity constant of the HIV-1 virus (immature). This is closely related to the characteristics of the virus, i.e. size, thickness, and intrinsic properties of the virus. Viruses with smaller shell thickness have lower elasticity constants, so they are more efficient at infecting host cells than viruses with higher elasticity constants.

Author Biographies

Luh Putu Budi Yasmini, FMIPA Universitas Pendidikan Ganesha

Prodi S-1 Pendidikan Fisika

Muhammad Rizki Fauzi, Universitas Pendidikan Ganesha

S-1 pendidikan Fisika

Nurfa Risha, Universitas pendidikan Ganesha

S-1 Pendidikan Fisika

I Gede Aris Gunadi, Universitas pendidikan Ganesha

S-1 Pendidikan Fisika


Ahadi,A., Johansson, D., dan Evilevitch, A., 2013. Modeling and simulation of the mechanical response from nanoindentation test of DNA-filled viral capsids, J Biol Phys. pp. 183–199, doi:

Eshaghi, B., Alsharif, N., An, X., Akiyama, H., Brown, K. A., Gummuluru, S., dan Reinhard, B.M., 2020, Stiffness of HIV-1 Mimicking Polymer Nanoparticles Modulates Ganglioside-Mediated Cellular Uptake and Trafficking, vol. 2000649, pp. 1–13, doi:

Evkin, A., Kolesnikov, M., dan Prikazchikov, D. A., 2016. Buckling of a spherical shell under external pressure and inward concentrated load: Asymptotic solution, Math. Mech. Solids, vol. 22, no. 6, pp. 1425–1437, doi:

Gelderblom, H.R., 1996. Structure and Classification of Viruses, Med. Microbiol.

Hutchinson, J. W. dan Thompson, J. M. T., 2017. Imperfections and energy barriers in shell buckling, Int. J. Solids Struct., vol. 148–149, pp. 157–168, 2018, doi:

Jiménez-Piqué, E., Llanes, L., dan Anglada, M., 2014. Resistance to Contact Deformation and Damage of Hard Ceramics, Compr. Hard Mater., vol. 2, pp. 367–383, doi:

Khakina, P. N., 2013. Buckling Load of Thin Spherical Shells Based on the Theorem of Work and Energy, Int. J. Eng. Technol., vol. 5, no. 3, pp. 392–394, doi:

Kol, N., Shi, Y., Tsvitov, M., Barlam, D., Shneck, R. Z., Kay, M. S., dan Rousso, I., 2007. A Stiffness Switch in Human Immunodeficiency Virus, Biophys J., vol. 92(5), pp 1777-1783, doi:

Landau, L. dan Lifshitz, E., 1986. Theory of Elasticity. New York: Pergamon.

Malkin, A.J., Kuznetsov, Y. G., dan McPherson, A., 2001. Viral capsomere structure, surface processes and growth kinetics in the crystallization of macromolecular crystals visualized by in situ atomic force microscopy. Journal of Christal Growth, vol. 232, pp. 173–183.

Mateu, M. G., 2012. Mechanical properties of viruses analyzed by atomic force microscopy: A virological perspective, Virus Res., vol. 168, no. 1–2, pp. 1–22, doi:

Timoshenko, J. M. , Stephen, P., dan Gere, 1961. Theory of Elastic Stability, 2nd ed. New York: Mc-Graw-Hill.

Zandi, R. dan Reguera, D., 2005. Mechanical properties of viral capsids, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 72, no. 2, doi:

Zhang, C. dan Zhang, N., 2020. Size Effect on Structure and Stiffness of Viral DNA during Temperature Variation. bioRxiv.08.29.273755.