PERBANDINGAN KONSTANTA ELASTISITAS VIRUS HIV-1 MATANG DAN HIV-1 BELUM MATANG

Penulis

  • Luh Putu Budi Yasmini Universitas Pendidikan Ganesha
  • Muhammad Rizki Fauzi Universitas Pendidikan Ganesha
  • Nurfa Risha Universitas pendidikan Ganesha
  • I Gede Aris Gunadi Universitas pendidikan Ganesha

DOI:

https://doi.org/10.23887/jstundiksha.v11i2.45400

Kata Kunci:

virus, elasticity constants, HIV-1 (mature), and HIV-1 (immature)

Abstrak

One of the characteristics of viruses is the stiffness of the virus shell. In the following review, the virus shell can be assumed to be a spring. The value of stiffness of the virus shell is different for various viruses depending on intrinsic properties (i.e. modulus of elasticity) and extrinsic properties (i.e. radius and thickness of the virus shell). In this paper, we analyze the value of stiffness of the virus shell by analytical dan simulation. The analytical method is based on plate and shell theory and Michell solution. The other, the simulation is based on finite element analysis (FEA) method. We examine the elasticity constants of two types of viruses, namely HIV-1 (mature) and HIV-1 (immature) viruses. It was found that the HIV-1 virus (mature) had a smaller elasticity constant than the elasticity constant of the HIV-1 virus (immature). This is closely related to the characteristics of the virus, i.e. size, thickness, and intrinsic properties of the virus. Viruses with smaller shell thickness have lower elasticity constants, so they are more efficient at infecting host cells than viruses with higher elasticity constants.

Biografi Penulis

Luh Putu Budi Yasmini, Universitas Pendidikan Ganesha

S-1 Pendidikan Fisika

Muhammad Rizki Fauzi, Universitas Pendidikan Ganesha

S-1 pendidikan Fisika

Nurfa Risha, Universitas pendidikan Ganesha

S-1 Pendidikan Fisika

I Gede Aris Gunadi, Universitas pendidikan Ganesha

S-1 Pendidikan Fisika

Referensi

Ahadi, A., Johansson, D., & Evilevitch, A. (2013). Modeling and simulation of the mechanical response from nanoindentation test of DNA-filled viral capsids. Journal of Biological Physics, 39(2), 183–199. https://doi.org/10.1007/s10867-013-9297-9.

Akin, J. E. (2009). Finite Element Analysis Concepts via SolidWorks.

Atanackovic, T. M., & Guran, A. (2000). Theory of Elasticity for Scientists and Engineers. In Theory of Elasticity for Scientists and Engineers. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-1330-7.

Bruinsma, R. F., L Wuite, G. J., & Roos, W. H. (2021). Physics of viral dynamics. https://doi.org/10.1038/s42254-020-00267-1.

Eshaghi, B., Alsharif, N., An, X., Akiyama, H., Brown, K. A., Gummuluru, S., & Reinhard, B. M. (2020). Stiffness of HIV‐1 Mimicking Polymer Nanoparticles Modulates Ganglioside‐Mediated Cellular Uptake and Trafficking. Advanced Science, 7(18), 2000649. https://doi.org/10.1002/advs.202000649.

Evkin, A., Kolesnikov, M., & Prikazchikov, D. A. (2017). Buckling of a spherical shell under external pressure and inward concentrated load: Asymptotic solution. Mathematics and Mechanics of Solids, 22(6), 1425–1437. https://doi.org/10.1177/1081286516635872.

Fajriyah, K., Mulawarman, W. G., & Rokhmansyah, A. (2017). Kepribadian Tokoh Utama Wanita Dalam Novel Alisya Karya Muhammad Makhdlori: Kajian Psikologi Sastra. Journal of Culture, Arts, Literature, and Linguistics (CaLLs), 3(1), 1. https://doi.org/10.30872/calls.v3i1.773.

Fischer, W., Giorgi, E. E., Chakraborty, S., Nguyen, K., Bhattacharya, T., Theiler, J., & Korber, B. (2021). HIV-1 and SARS-CoV-2: Patterns in the evolution of two pandemic pathogens. Cell Host & Microbe, 29(7), 1093–1110. https://doi.org/10.1016/j.chom.2021.05.012.

Gelderblom, H. R. (1996). Structure and Classification of Viruses.

Hutchinson, J. W., & Thompson, J. M. T. (2018). Imperfections and energy barriers in shell buckling. International Journal of Solids and Structures, 148–149, 157–168. https://doi.org/10.1016/j.ijsolstr.2018.01.030.

Jiménez-Piqué, E., Llanes, L., & Anglada, M. (2014). Resistance to Contact Deformation and Damage of Hard Ceramics. In Comprehensive Hard Materials (pp. 367–383). Elsevier. https://doi.org/10.1016/B978-0-08-096527-7.00032-5.

Keith R. Symon. (1971). Mechanics (third edition).

Khakina, P. N. (2013). Buckling Load of Thin Spherical Shells Based on the Theorem of Work and Energy. International Journal of Engineering and Technology, 392–394. https://doi.org/10.7763/IJET.2013.V5.581.

Kol, N., Shi, Y., Tsvitov, M., Barlam, D., Shneck, R. Z., Kay, M. S., & Rousso, I. (2007). A Stiffness Switch in Human Immunodeficiency Virus. Biophysical Journal, 92(5), 1777–1783. https://doi.org/10.1529/biophysj.106.093914.

Kondylis, P., Schlicksup, C. J., Zlotnick, A., & Jacobson, S. C. (2019). Analytical Techniques to Characterize the Structure, Properties, and Assembly of Virus Capsids. Anal Chem. https://doi.org/10.1021/acs.analchem.8b04824.

Landau, D., & Lifshitz, E. M. (1986). o o ft) (0 I o Theory of Elasticity Second Revised and Enlarged Edition Course of Theoretical Physics Volume 7.

Li, S., Eghiaian, F., Sieben, C., Herrmann, A., & Schaap, I. A. T. (2011). Bending and puncturing the influenza lipid envelope. Biophysical Journal, 100(3), 637–645. https://doi.org/10.1016/j.bpj.2010.12.3701.

Lošdorfer Božič, A., Šiber, A., & Podgornik, R. (2013). Statistical analysis of sizes and shapes of virus capsids and their resulting elastic properties. Journal of Biological Physics, 39(2), 215–228. https://doi.org/10.1007/s10867-013-9302-3.

Malkin, A. ., Kuznetsov, Y. ., & McPherson, A. (2001). Viral capsomere structure, surface processes and growth kinetics in the crystallization of macromolecular crystals visualized by in situ atomic force microscopy. Journal of Crystal Growth, 232(1–4), 173–183. https://doi.org/10.1016/S0022-0248(01)01063-6.

Mateu, M. G. (2012). Mechanical properties of viruses analyzed by atomic force microscopy: A virological perspective. Virus Research, 168(1–2), 1–22. https://doi.org/10.1016/j.virusres.2012.06.008.

Mbhele, N., Chimukangara, B., & Gordon, M. (2021). HIV-1 integrase strand transfer inhibitors: a review of current drugs, recent advances and drug resistance. International Journal of Antimicrobial Agents, 57(5), 106343. https://doi.org/10.1016/j.ijantimicag.2021.106343.

Michel, J. P., Ivanovska, I. L., Gibbons, M. M., Klug, W. S., Knobler, C. M., Wuite, G. J. L., & Schmidt, C. F. (2006). Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proceedings of the National Academy of Sciences of the United States of America, 103(16), 6184–6189. https://doi.org/10.1073/pnas.0601744103.

Sakyi, K. A., Musona, D., & Mweshi, G. (2020). Research Methods and Methodology. Advances in Social Sciences Research Journal, 7(3), 296–302. https://doi.org/10.14738/assrj.73.7993.

Schaap, I. A. T., Eghiaian, F., des Georges, A., & Veigel, C. (2012). Effect of envelope proteins on the mechanical properties of influenza virus. The Journal of Biological Chemistry, 287(49), 41078–41088. https://doi.org/10.1074/jbc.M112.412726.

Scoca, V., & Di Nunzio, F. (2021). Membraneless organelles restructured and built by pandemic viruses: HIV-1 and SARS-CoV-2. Journal of Molecular Cell Biology, 13(4), 259–268. https://doi.org/10.1093/jmcb/mjab020.

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/J.JBUSRES.2019.07.039.

Stephen Timoshenko, J. G. Gere, & James M. Gere. (1961). Theory of elastic stability (Stephen P. Timoshenko, James M. Gere) (z-lib.org).

Sufiawati, I., Herrera, R., Mayer, W., Cai, X., Borkakoti, J., Lin, V., & Tugizov, S. M. (2021). Human Immunodeficiency Virus (HIV) and Human Cytomegalovirus (HCMV) Coinfection of Infant Tonsil Epithelium May Synergistically Promote both HIV-1 and HCMV Spread and Infection. Journal of Virology, 95(18), e00921-21. https://doi.org/10.1128/JVI.00921-21.

Zandi, R., & Reguera, D. (2005). Mechanical properties of viral capsids. Physical Review E, 72(2), 021917. https://doi.org/10.1103/PhysRevE.72.021917.

Zhang, C.-Y., & Zhang, N.-H. (2020). Size Effect on Structure and Stiffness of Viral DNA during Temperature Variation. https://doi.org/10.1101/2020.08.29.273755.

Diterbitkan

2022-08-15

Cara Mengutip

Yasmini, L. P. B., Fauzi, M. R., Risha, N., & Gunadi, I. G. A. (2022). PERBANDINGAN KONSTANTA ELASTISITAS VIRUS HIV-1 MATANG DAN HIV-1 BELUM MATANG. JST (Jurnal Sains Dan Teknologi), 11(2), 283–292. https://doi.org/10.23887/jstundiksha.v11i2.45400

Terbitan

Bagian

Articles