Perbandingan Konstanta Elastisitas Virus HIV-1 Matang dan HIV-1 Belum Matang

Authors

  • Luh Putu Budi Yasmini FMIPA Universitas Pendidikan Ganesha
  • Muhammad Rizki Fauzi Universitas Pendidikan Ganesha
  • Nurfa Risha Universitas pendidikan Ganesha
  • I Gede Aris Gunadi Universitas pendidikan Ganesha

DOI:

https://doi.org/10.23887/jstundiksha.v11i2.45400

Keywords:

Virus, Konstanta Elastisitas, HIV-1 (Matang), HIV-1 (Belum Matang)

Abstract

Virus pada aspek fisis masih sangat menarik untuk dikaji berdasarkan konsep Fisika. Salah satu ciri virus adalah kekakuan cangkang virus tersebut. Dalam tinjauan selanjutnya, cangkang virus dapat diasumsikan sebagai pegas. Tujuan dari penelitian ini adalah untuk menganalisis akurasi dan wawasan mengenai kekakuan cangkang virus secara teoretik dengan menggunakan selesaian persamaan Michell. Dalam artikel ini, dikaji nilai kekakuan cangkang virus secara teoretik melalui metode analitik dan simulasi dengan mengkaji berbagai sumber pustaka terkait. Metode analisis didasarkan pada teori plate & shell, serta dibahas mengenai suatu metode analitik lainnya, yakni dengan menggunakan persamaan Michell. Metode simulasi didasarkan pada metode finite element analysis (FEA). Dikaji konstanta elastisitas dua jenis virus, yakni virus HIV-1 (matang) dan HIV-1 (belum matang). Hasil penelitian menunjukkan bahwa virus HIV-1 (matang) memiliki konstanta elastisitas yang lebih kecil bila dibandingkan dengan konstanta elastisitas virus HIV-1 (belum matang). Hal tersebut sangat terkait dengan karakteristik virus tersebut, yakni ukuran, ketebalan, dan sifat instrinsik virus.  Virus dengan ketebalan cangkang yang lebih kecil memiliki konstanta elastisitas yang lebih kecil, sehingga lebih efisien untuk menginfeksi sel inang dibandingkan dengan virus yang memiliki konstanta elastisitas yang lebih besar.

Author Biographies

Luh Putu Budi Yasmini, FMIPA Universitas Pendidikan Ganesha

Prodi S-1 Pendidikan Fisika

Muhammad Rizki Fauzi, Universitas Pendidikan Ganesha

S-1 pendidikan Fisika

Nurfa Risha, Universitas pendidikan Ganesha

S-1 Pendidikan Fisika

I Gede Aris Gunadi, Universitas pendidikan Ganesha

S-1 Pendidikan Fisika

References

Ahadi, A., Johansson, D., & Evilevitch, A. (2013). Modeling and simulation of the mechanical response from nanoindentation test of DNA-filled viral capsids. Journal of Biological Physics, 39(2), 183–199. https://doi.org/10.1007/s10867-013-9297-9.

Akin, J. E. (2009). Finite Element Analysis Concepts via SolidWorks.

Atanackovic, T. M., & Guran, A. (2000). Theory of Elasticity for Scientists and Engineers. In Theory of Elasticity for Scientists and Engineers. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-1330-7.

Bruinsma, R. F., L Wuite, G. J., & Roos, W. H. (2021). Physics of viral dynamics. https://doi.org/10.1038/s42254-020-00267-1.

Eshaghi, B., Alsharif, N., An, X., Akiyama, H., Brown, K. A., Gummuluru, S., & Reinhard, B. M. (2020). Stiffness of HIV‐1 Mimicking Polymer Nanoparticles Modulates Ganglioside‐Mediated Cellular Uptake and Trafficking. Advanced Science, 7(18), 2000649. https://doi.org/10.1002/advs.202000649.

Evkin, A., Kolesnikov, M., & Prikazchikov, D. A. (2017). Buckling of a spherical shell under external pressure and inward concentrated load: Asymptotic solution. Mathematics and Mechanics of Solids, 22(6), 1425–1437. https://doi.org/10.1177/1081286516635872.

Fajriyah, K., Mulawarman, W. G., & Rokhmansyah, A. (2017). Kepribadian Tokoh Utama Wanita Dalam Novel Alisya Karya Muhammad Makhdlori: Kajian Psikologi Sastra. Journal of Culture, Arts, Literature, and Linguistics (CaLLs), 3(1), 1. https://doi.org/10.30872/calls.v3i1.773.

Fischer, W., Giorgi, E. E., Chakraborty, S., Nguyen, K., Bhattacharya, T., Theiler, J., & Korber, B. (2021). HIV-1 and SARS-CoV-2: Patterns in the evolution of two pandemic pathogens. Cell Host & Microbe, 29(7), 1093–1110. https://doi.org/10.1016/j.chom.2021.05.012.

Gelderblom, H. R. (1996). Structure and Classification of Viruses.

Hutchinson, J. W., & Thompson, J. M. T. (2018). Imperfections and energy barriers in shell buckling. International Journal of Solids and Structures, 148–149, 157–168. https://doi.org/10.1016/j.ijsolstr.2018.01.030.

Jiménez-Piqué, E., Llanes, L., & Anglada, M. (2014). Resistance to Contact Deformation and Damage of Hard Ceramics. In Comprehensive Hard Materials (pp. 367–383). Elsevier. https://doi.org/10.1016/B978-0-08-096527-7.00032-5.

Keith R. Symon. (1971). Mechanics (third edition).

Khakina, P. N. (2013). Buckling Load of Thin Spherical Shells Based on the Theorem of Work and Energy. International Journal of Engineering and Technology, 392–394. https://doi.org/10.7763/IJET.2013.V5.581.

Kol, N., Shi, Y., Tsvitov, M., Barlam, D., Shneck, R. Z., Kay, M. S., & Rousso, I. (2007). A Stiffness Switch in Human Immunodeficiency Virus. Biophysical Journal, 92(5), 1777–1783. https://doi.org/10.1529/biophysj.106.093914.

Kondylis, P., Schlicksup, C. J., Zlotnick, A., & Jacobson, S. C. (2019). Analytical Techniques to Characterize the Structure, Properties, and Assembly of Virus Capsids. Anal Chem. https://doi.org/10.1021/acs.analchem.8b04824.

Landau, D., & Lifshitz, E. M. (1986). o o ft) (0 I o Theory of Elasticity Second Revised and Enlarged Edition Course of Theoretical Physics Volume 7.

Li, S., Eghiaian, F., Sieben, C., Herrmann, A., & Schaap, I. A. T. (2011). Bending and puncturing the influenza lipid envelope. Biophysical Journal, 100(3), 637–645. https://doi.org/10.1016/j.bpj.2010.12.3701.

Lošdorfer Božič, A., Šiber, A., & Podgornik, R. (2013). Statistical analysis of sizes and shapes of virus capsids and their resulting elastic properties. Journal of Biological Physics, 39(2), 215–228. https://doi.org/10.1007/s10867-013-9302-3.

Malkin, A. ., Kuznetsov, Y. ., & McPherson, A. (2001). Viral capsomere structure, surface processes and growth kinetics in the crystallization of macromolecular crystals visualized by in situ atomic force microscopy. Journal of Crystal Growth, 232(1–4), 173–183. https://doi.org/10.1016/S0022-0248(01)01063-6.

Mateu, M. G. (2012). Mechanical properties of viruses analyzed by atomic force microscopy: A virological perspective. Virus Research, 168(1–2), 1–22. https://doi.org/10.1016/j.virusres.2012.06.008.

Mbhele, N., Chimukangara, B., & Gordon, M. (2021). HIV-1 integrase strand transfer inhibitors: a review of current drugs, recent advances and drug resistance. International Journal of Antimicrobial Agents, 57(5), 106343. https://doi.org/10.1016/j.ijantimicag.2021.106343.

Michel, J. P., Ivanovska, I. L., Gibbons, M. M., Klug, W. S., Knobler, C. M., Wuite, G. J. L., & Schmidt, C. F. (2006). Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proceedings of the National Academy of Sciences of the United States of America, 103(16), 6184–6189. https://doi.org/10.1073/pnas.0601744103.

Sakyi, K. A., Musona, D., & Mweshi, G. (2020). Research Methods and Methodology. Advances in Social Sciences Research Journal, 7(3), 296–302. https://doi.org/10.14738/assrj.73.7993.

Schaap, I. A. T., Eghiaian, F., des Georges, A., & Veigel, C. (2012). Effect of envelope proteins on the mechanical properties of influenza virus. The Journal of Biological Chemistry, 287(49), 41078–41088. https://doi.org/10.1074/jbc.M112.412726.

Scoca, V., & Di Nunzio, F. (2021). Membraneless organelles restructured and built by pandemic viruses: HIV-1 and SARS-CoV-2. Journal of Molecular Cell Biology, 13(4), 259–268. https://doi.org/10.1093/jmcb/mjab020.

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/J.JBUSRES.2019.07.039.

Stephen Timoshenko, J. G. Gere, & James M. Gere. (1961). Theory of elastic stability (Stephen P. Timoshenko, James M. Gere) (z-lib.org).

Sufiawati, I., Herrera, R., Mayer, W., Cai, X., Borkakoti, J., Lin, V., & Tugizov, S. M. (2021). Human Immunodeficiency Virus (HIV) and Human Cytomegalovirus (HCMV) Coinfection of Infant Tonsil Epithelium May Synergistically Promote both HIV-1 and HCMV Spread and Infection. Journal of Virology, 95(18), e00921-21. https://doi.org/10.1128/JVI.00921-21.

Zandi, R., & Reguera, D. (2005). Mechanical properties of viral capsids. Physical Review E, 72(2), 021917. https://doi.org/10.1103/PhysRevE.72.021917.

Zhang, C.-Y., & Zhang, N.-H. (2020). Size Effect on Structure and Stiffness of Viral DNA during Temperature Variation. https://doi.org/10.1101/2020.08.29.273755.

Downloads

Published

2022-08-15

Issue

Section

Articles