Student Activity Sheet Based on Inquiry for Supporting Practical Work in Solution Course

Authors

DOI:

https://doi.org/10.23887/jpp.v55i2.45691

Keywords:

student activity sheet, inquiry, practical work, solution course

Abstract

The Covid-19 pandemic has caused the government make policies by implementing online learning methods. Practical activities in the laboratory are not possible during online learning, so the lecturer develops student activity sheets as a practical guide at home with tools and materials that are easily found. This study aims to develop the validity and practicality of student activity sheets based on inquiry in the solution course, especially for making solutions from solid and liquid materials. Validity is viewed from the criteria of content, language, and presentation. Meanwhile, the practicality in terms of student activities during the learning process and student responses after the implementation of developed student activity sheets. The research method used is Research and Development (R&D) design and is limited only to a limited product trial stage. The research was conducted on 91 students majoring in science class. The research instrument consisted of validation sheets, student activity observation sheets, and student response questionnaires. Data analysis that used in this study is descriptive quantitatively with percentage techniques. The results indicate that the developed student activity sheets are valid and very valid category because it reaches a value of 2.9. The most dominant student activity is discussing with a group of friends. The student activity sheet also received good and very good (positive) responses from students because it reached a percentage of 61% with good and very good categories. So it can be concluded that the developed student activity sheets are declared feasible to be used in the learning process.

References

Abrahams, I., & Reiss, M. J. (2012). Practical work: Its effectiveness in primary and secondary schools in England. Journal of Research in Science Teaching, 49(8). https://doi.org/10.1002/tea.21036.

Abrahams, I., Reiss, M. J., & Sharpe, R. (2014). The impact of the ‘Getting Practical: Improving Practical Work in Science’ continuing professional development programme on teachers’ ideas and practice in science practical work. Research in Science and Technological Education, 32(3). https://doi.org/10.1080/02635143.2014.931841.

Acar Sesen, B., & Tarhan, L. (2013). Inquiry-Based Laboratory Activities in Electrochemistry: High School Students’ Achievements and Attitudes. Research in Science Education, 43(1). https://doi.org/10.1007/s11165-011-9275-9.

Akuma, F. V., & Callaghan, R. (2019). Teaching practices linked to the implementation of inquiry-based practical work in certain science classrooms. Journal of Research in Science Teaching, 56(1). https://doi.org/10.1002/tea.21469.

Arends. (2012). Learning to Teach 9th Edition. McGraw-Hill.

Aulia, E, V., & Ismono. (2015). Inkuiri Untuk Melatihkan Keterampilan Berpikir Tingkat Tinggi Siswa Pada Materi Ikatan Kimia Kelas X Sma Widya Darma Surabaya. UNESA Journal of Chemical Education, 4(2), 163–171. https://doi.org/10.26740/ujced.v4n2.p%25p.

Aulia, Ernita, & Aulia, E. V. (2020). Improving Science Literacy Skills for High School Students Through Guided Inquiry-Based Learning. https://doi.org/10.2991/miseic-19.2019.36.

Aulia, E. V., Poedjiastoeti, S., & Agustini, R. (2018). The Effectiveness of Guided Inquiry-based Learning Material on Students’ Science Literacy Skills. Journal of Physics: Conference Series, 947(1). https://doi.org/10.1088/1742-6596/947/1/012049.

Bilgin, I. (2009). The effects of guided inquiry instruction incorporating a cooperative learning approach on university students’ achievement of acid and bases concepts and attitude toward guided inquiry instruction. Scientific Research and Essays, 4(10). https://academicjournals.org/journal/SRE/article-full-text-pdf/3BF307D18498.

Čanigová, K. (2022). “Will You Work with Me?”: Visual Worksheets as Facilitators of Inclusive, Collaborative, and Empowering Interviews with Vulnerable Populations. International Journal of Qualitative Methods, 21. https://doi.org/10.1177/16094069211069444.

Constantinou, M., & Abrahams, I. (2019). Does it really Work then? Practical Work in Undergraduate Science Education. New Perspectives in Science Education, 8Th Edition. https://conference.pixel-online.net/library_scheda.php?id_abs=3615.

di Fuccia, D., Witteck, T., Markic, S., & Eilks, I. (2012). Trends in practical work in German Science Education. Eurasia Journal of Mathematics, Science and Technology Education, 8(1). https://doi.org/10.12973/eurasia.2012.817a.

Dipuja, D. A., Lufri, L., & Ahda, Y. (2018). Development Biology Worksheet Oriented Accelerated Learning on Plantae and Ecosystems for 10th-Grade Senior High School Students. IOP Conference Series: Materials Science and Engineering, 335(1). https://doi.org/10.1088/1757-899X/335/1/012092.

Dwikoranto, Setiani, R., Widuroyekti, B., Tresnaningsih, S., Sambada, D., Setyowati, T., Rohman, A., & Harnoto, B. T. (2020). The Effectiveness of the Student Activity Sheet (SAS) on Teaching-Learning and Creativity (TLC) Model to Increase Creativity Competence. Studies in Learning and Teaching, 1(3). https://doi.org/10.46627/silet.v1i3.36.

Estriegana, R., Medina-Merodio, J. A., & Barchino, R. (2019). Student acceptance of virtual laboratory and practical work: An extension of the technology acceptance model. Computers and Education, 135. https://doi.org/10.1016/j.compedu.2019.02.010.

Evans, R., & Cleghorn, A. (2022). Do student teachers see what learners see? – Avoiding instructional dissonance when designing worksheets. South African Journal of Childhood Education, 12(1). https://doi.org/10.4102/sajce.v12i1.1015.

Ferreira, S., & Morais, A. M. (2020). Practical Work in Science Education: Study of Different Contexts of Pedagogic Practice. Research in Science Education, 50(4). https://doi.org/10.1007/s11165-018-9743-6.

Fitria, R., Suparman, Hairun, Y., & Ruhama, M. A. H. (2020). Student’s worksheet design for social arithmetic based on PBL to increase the critical thinking skills. Universal Journal of Educational Research, 8(5). https://doi.org/10.13189/ujer.2020.080541.

Hadkaew, P., & Liewkongsthaporn, W. (2016). Developing Students ’ 21 Century Skills through Project-Based Learning : Mathematics Teachers ’ Perception and Practice. SEAMEO Conferences, 20–21. https://doi.org/10.13140/RG.2.1.2124.8406.

Hastuti, P. W., Nurohman, S., & Setianingsih, W. (2018). The Development of Science Worksheet Based on Inquiry Science Issues to Improve Critical Thinking and Scientific Attitude. Journal of Physics: Conference Series, 1097(1). https://doi.org/10.1088/1742-6596/1097/1/012004.

Hossain, M. J., Ahmmed, F., Rahman, S. M. A., Sanam, S., Emran, T. Bin, & Mitra, S. (2021). Impact of online education on fear of academic delay and psychological distress among university students following one year of COVID-19 outbreak in Bangladesh. Heliyon, 7(6). https://doi.org/10.1016/j.heliyon.2021.e07388.

Hossain, M. J., & Rahman, S. M. A. (2021). Repurposing therapeutic agents against SARS-CoV-2 infection: most promising and neoteric progress. In Expert Review of Anti-Infective Therapy (Vol. 19, Issue 8). https://doi.org/10.1080/14787210.2021.1864327.

Husnaini, S. J., & Chen, S. (2019). Effects of guided inquiry virtual and physical laboratories on conceptual understanding, inquiry performance, scientific inquiry self-efficacy, and enjoyment. Physical Review Physics Education Research, 15(1). https://doi.org/10.1103/PhysRevPhysEducRes.15.010119.

Jeppsson, F., Danielsson, K., Bergh Nestlog, E., & Tang, K.-S. (2022). Primary Pupils’ Multimodal Representations in Worksheets—Text Work in Science Education. Education Sciences, 12(3). https://doi.org/10.3390/educsci12030221.

Kidman, G. (2012). Australia at the crossroads: A review of school science practical work. Eurasia Journal of Mathematics, Science and Technology Education, 8(1). https://doi.org/10.12973/eurasia.2012.815a.

Kuhlthau, C. et al. (2015). Guided Inquiry: Learning in the 21st century. Libraries Unlimited, Inc.

Maison, M., Kurniawan, D. A., & Pratiwi, N. I. S. (2020). Pendidikan Sains di Sekolah Menengah Pertama Perkotaan: Bagaimana Sikap dan Keaktifan Belajar Siswa terhadap Sains? Jurnal Inovasi Pendidikan IPA, 6(2), 135–145. https://doi.org/10.21831/jipi.v6i2.32425.

Malicoban, E. V., & Castro, E. J. (2022). Development of a Physics Laboratory Activity Kit for the Do-It-Yourself (DIY) Physics Equipment and Laboratory Activity. International Journal of STEM Education for Sustainability, 2(2). https://doi.org/10.53889/ijses.v2i2.7.

Martínez Torregrosa, J., Domènech Blanco, J. L., Menargues, A., & Romo Guadarrama, G. (2012). The integration of labwork as a guided-inquiry-based chemistry education. Educacion Quimica, 23. https://doi.org/10.1016/S0187-893X(17)30143-X.

Mouromadhoni, K. R., Prasetyo, Z. K., & Atun, S. (2019). Development Student Activity Sheet of Natural Sciences with Authentic Inquiry Learning Approach to Improve Problemsolving Skills of Junior High School Students. Journal of Physics: Conference Series, 1233(1). https://doi.org/10.1088/1742-6596/1233/1/012092.

Muskita, M., Subali, B., & Djukri. (2020). Effects of worksheets base the levels of inquiry in improving critical and creative thinking. International Journal of Instruction, 13(2). https://doi.org/10.29333/iji.2020.13236a.

Mutlu, A. (2020). Evaluation of students’ scientific process skills through reflective worksheets in the inquiry-based learning environments. Reflective Practice, 21(2), 271–286. https://doi.org/10.1080/14623943.2020.1736999.

Nazar, M., Fazlia, R., Rahmayani, I., & Yulia, Z. (2018). Pengembangan Lembar Kerja Mahasiswa (LKM) Berbasis Inkuiri Terbimbing Pada Materi Korosi. Edu-Sains, 10(2). https://doi.org/10.15408/es.v10i2.8699.

Ni’mah, S. (2016). Lembar kerja mahasiswa berbasis Inkuiri Terbimbing untuk meningkatkan keterampilan proses Sains mahasiswa. Lentera: Jurnal Pendidikan, 11(2). https://doi.org/10.33654/jpl.v11i2.414.

Ningrum, M. V., Yulkifli, Abdullah, R., & Nasution, V. Y. (2019). Preliminary study in the student worksheet development using inquiry based learning model with science process skills approach for physics learning of second grade high school. Journal of Physics: Conference Series, 1317(1). https://doi.org/10.1088/1742-6596/1317/1/012163.

Norahmi, M. (2017). 21st-century teachers: The students’ perspectives. Journal on English as a Foreign Language, 7(1), 77. https://doi.org/10.23971/jefl.v7i1.538.

Nunaki, J. H., Damopolii, I., Kandowangko, N. Y., & Nusantari, E. (2019). The effectiveness of inquiry-based learning to train the students’ metacognitive skills based on gender differences. International Journal of Instruction, 12(2). https://doi.org/10.29333/iji.2019.12232a.

Pereira, S., Rodrigues, M. J., & Vieira, R. M. (2020). Scientific literacy in the early years–practical work as a teaching and learning strategy. Early Child Development and Care, 190(1). https://doi.org/10.1080/03004430.2019.1653553.

Prastowo. (2013). Panduan Kreatif Membuat Bahan Ajar Inovatif. DIVA Press.

Ramadhona, R., & Izzati, N. (2018). Pengembangan Lembar Kerja Mahasiswa Berbasis Inkuiri Mata Kuliah Matematika Umum Untuk Mahasiswa Pendidikan Kimia. Jurnal Kiprah, 6(2). https://doi.org/10.31629/kiprah.v6i2.780.

Raysha, A. A., Shafira, N., & Rizky, A. (2020). The Development of Students’ Worksheet Based on Inquiry Integrated by Youtube Video As The Alternative Of Teaching Materials During The Covid-19 Pandemic Period. Pancaran Pendidikan, 9(2). https://doi.org/10.25037/pancaran.v9i2.294.

Septiani, T., & Yulkifli. (2021). Validity of student worksheet inquiry based learning model with multi-representation approach integrated scientific literacy for grade XI physics learning on 21stcentury. Journal of Physics: Conference Series, 1876(1). https://doi.org/10.1088/1742-6596/1876/1/012087.

Servitri, M. O., & Trisnawaty, W. (2018). The Development of Inquiry Science Worksheet to Facilitate the Process Skills. Journal of Education and Learning (EduLearn), 12(4). https://doi.org/10.11591/edulearn.v12i4.8937.

Slavin, R. E. (2011). Psikologi Pendidikan: Teori dan Praktik Edisi Kesembilan. PT. Indeks.

Sukmadinata. (2015). Metode Penelitian Pendidikan. Rosdakarya.

Sutiani, A., Situmorang, M., & Silalahi, A. (2021). Implementation of an Inquiry Learning Model with Science Literacy to Improve Student Critical Thinking Skills. International Journal of Instruction, 14(2). https://doi.org/10.29333/iji.2021.1428a.

Tsakeni, M. (2021). Preservice Teachers’ Use of Computational Thinking to Facilitate Inquiry-based Practical Work in Multiple-deprived Classrooms. Eurasia Journal of Mathematics, Science and Technology Education, 17(1). https://doi.org/10.29333/ejmste/9574.

Ural, E. (2016). The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students’ Chemistry Laboratory Attitudes, Anxiety and Achievement. Journal of Education and Training Studies, 4(4). https://doi.org/10.11114/jets.v4i4.1395.

Wityanita, Djamas, D., & Yohandri. (2019). Validation of Physics student’s worksheet based on cognitive conflict strategy to minimize student’s misconception. Journal of Physics: Conference Series, 1185(1). https://doi.org/10.1088/1742-6596/1185/1/012112.

Yenni, Y., & Kurniasi, E. R. (2018). Pengembangan Lkm Berbasis Inquiry Untuk Mengoptimalkan Kemampuan Penalaran Adaptif. Jurnal Analisa, 4(2). https://doi.org/10.15575/ja.v4i2.3201.

Yerizon, Y., Putra, A. A., & Subhan, M. (2018). Student Responses Toward Student Worksheets Based on Discovery Learning for Students with Intrapersonal and Interpersonal Intelligence. IOP Conference Series: Materials Science and Engineering, 335(1). https://doi.org/10.1088/1757-899X/335/1/012113.

Yulkifli, Y., Jaafar, R., & Resnita, L. (2020). Developing Student Worksheets Using Inquiry-based Learning Model with Scientific Approach to Improve Tenth Grade Students’ Physics Competence. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 10(1). https://doi.org/10.26740/jpfa.v10n1.p56-70.

Zhafira, N. H., Ertika, Y., & Chairiyaton. (2020). Persepsi Mahasiswa Terhadap Perkuliahan Daring Sebagai Sarana Pembelajaran Selama Masa Karantina Covid-19. Jurnal Bisnis Dan Kajian Strategi Manajemen, 4(1). https://doi.org/10.35308/jbkan.v4i1.1981.

Downloads

Published

2022-07-08

How to Cite

Aulia, E. V., Widodo, W., & Sabtiawan, W. B. (2022). Student Activity Sheet Based on Inquiry for Supporting Practical Work in Solution Course. Jurnal Pendidikan Dan Pengajaran, 55(2), 262–274. https://doi.org/10.23887/jpp.v55i2.45691

Issue

Section

Articles