Application of Multiple Representation-Based VIFOCA Problem Solving Strategies in Physics Learning
DOI:
https://doi.org/10.23887/jet.v7i3.67055Keywords:
Physics Problem Solving, Multiple Representation, VIFOCA StrategyAbstract
Students' difficulties in solving physics problems were identified from various factors, including students' poor understanding of how to apply the steps of a physics problem solving strategy. Therefore, it is necessary to innovate strategies which both simple and easy to use by students in the process of solving physics problems by conducting literature reviews. The study aimed at analyzing multiple representation-based vifoca problem solving strategies in physics learning. This research used mixed methods, literature study with meta-analysis using 22 research subjects from national journals, Sinta-accredited national journals, AIP Conference, and articles from Scopus-indexed international journals in the 2018-2022 range. The survey of 82 respondents including lecturers and students, were used to determine the responses to the application of physics problem solving strategies. The literature study shows the formulation of a physics problem solving strategy that is named VIFOCA, which consists of three work steps, namely: (1) visualization, (2) formulation, and (3) calculation. Positive responses based on survey results showed that the VIFOCA strategy can be used to solve physics problems, the work steps are systematic, easy to apply, and more practical. VIFOCA strategy follow-up studies can be carried out in a comprehensive manner that is empirically applied in physics learning to determine the effectiveness of the VIFOCA strategy in solving physics problems.
References
Abdullah, H. (2018). Using knowledge sketching strategy to increase ability in solving the multi-concept physics problem. Asia-Pacific Forum on Science Learning and Teaching, 19(2). https://doi.org/10.22158/wjer.v5n3p288.
Abdurrahman, A., Setyaningsih, C. A., & Jalmo, T. (2019). Implementating multiple representation-based worksheet to develop critical thinking skills. Journal of Turkish Science Education, 16(1), 138–155. https://doi.org/10.12973/tused.10271a.
Akben, N. (2020). Effects of the Problem-Posing Approach on Students’ Problem Solving Skills and Metacognitive Awareness in Science Education. Research in Science Education, 50(3), 1143–1165. https://doi.org/10.1007/s11165-018-9726-7.
Amanah, P. D., Harjono, A., & Gunada, I. W. (2017). Kemampuan Pemecahan Masalah dalam Fisika dengan Pembelajaran Generatif Berbantuan Scaffolding dan Advance Organizer. Jurnal Pendidikan Fisika Dan Teknologi, 3(1). https://doi.org/10.29303/jpft.v3i1.334
Anwar, M. (2021). Analysis of Problem-Solving Skills of Vocational Teacher Candidates in Terms of Several Variables. Journal of Education Technology, 5(1), 132–136. https://doi.org/10.23887/jet.v5i1.33624.
Atwina Aspiranti Ndoa, Y. (2022). Physics E-Book based on STEM Integrated Modelling Instruction in Circular Motion. Journal of Education Technology, 6(4), 711–721. https://doi.org/10.23887/jet.v6i4.486.
Azizah, R., Yuliati, L., & Latifah, E. (2015). Kesulitan Pemecahan Masalah Fisika Pada Siswa Sma The Physic Problem Solving Difficulties On High School Student. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA, 5(2). http://journal.unesa.ac.id/index.php/jpfa.
Bollen, L., Kampen, P., Baily, C., Kelly, M., & Cock, M. (2017). Student difficulties regarding symbolic and graphical representations of vector fields. Physical Review Physics Education Research, 13(2). https://doi.org/10.1103/PhysRevPhysEducRes.13.020109.
Candido, K. J., Gillesania, K. C., Mercado, J. C., & Reales, J. B. (2022). Interactive Simulation on Modern Physics: A Systematic Review. International Journal of Multidisciplinary: Applied Business & Education Research, 3(8), 1452–1462. https://doi.org/10.11594/ijmaber.03.08.08.
Chang, J.-Y., Cheng, M.-F., Lin, S.-Y., & Lin, J.-L. (2021). Exploring students’ translation performance and use of intermediary representations among multiple representations: Example from torque and rotation. Teaching and Teacher Education, 97, 103209. https://doi.org/10.1016/j.tate.2020.103209.
Chusni, M. M., Saputro, S., Surant, S., & Rahardjo, S. B. (2022). Enhancing Critical Thinking Skills of Junior High School Students through Discovery-Based Multiple Representations Learning Model. International Journal of Instruction, 15(1), 927–945. https://doi.org/10.29333/iji.2022.15153a.
Conceição, T., Baptista, M., & Ponte, J. P. (2021). Lesson study as a means to change secondary preservice physics teachers’ practice in the use of multiple representations in teaching. Education Sciences, 11(12). https://doi.org/10.3390/educsci11120791.
Dinçer, B. (2022). The relationship between multiple representations and thinking structures: example of the integral concept. Journal for the Education of Gifted Young Scientists. https://doi.org/10.17478/jegys.1213997.
Eryilmaz Toksoy, S. (2022). Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem. Kuramsal Eğitimbilim, 15(2), 327–346. https://doi.org/10.30831/akukeg.975348.
Fitriyani, R. V, Supeno, S., & Maryani, M. (2019). Pengaruh LKS Kolaboratif Pada Model Pembelajaran Berbasis Masalah Terhadap Keterampilan Pemecahan Masalah Fisika Siswa SMA. Berkala Ilmiah Pendidikan Fisika, 7(2), 71. https://doi.org/10.20527/bipf.v7i2.6026.
Haeruddin, P., K., Z., & Supahar. (2020). The development of a metacognition instrument for college students to solve physics problems. International Journal of Instruction, 13(1), 767–782. https://doi.org/10.29333/iji.2020.13149a.
Halim, A., Susanna, E., Yusrizal, M., & Irwandi, I. (2021). The impact of the problem-based instruction model on the students’ problem solving ability. AIP Conference Proceedings, 2330. https://doi.org/10.1063/5.0043124.
Handayani, M. W., Swistoro, E., & Risdianto, E. (2018). Pengaruh Model Pembelajaran Problem Solving Fisika terhadap Kemampuan Penguasaan Konsep dan Kemampuan Pemecahan Masalah Siswa Kelas X MIPA SMAN 4 Kota Bengkulu. Jurnal Kumparan Fisika, 1(3), 36–44. https://doi.org/10.33369/jkf.1.3.36-44.
Hanisa, N. M., Arifuddin, M., & Miriam, S. (2019). Meningkatkan Keterampilan Prosedural dan Hasil Belajar Dengan Metode Pemecahan Masalah Melalui Pengajaran Langsung. Jurnal Ilmiah Pendidikan Fisika, 3(1), 33–40. https://doi.org/10.20527/jipf.v3i1.
Heller, P., Keith, R., & Anderson, S. (1992). Teaching problem solving through cooperative grouping. Part 1: Group versus individual problem solving. American Journal of Physics, 60(7), 627–636. https://doi.org/10.1119/1.17117.
Herayanti, L., Widodo, W., Susantini, E., & Gunawan, G. (2020). The effectiveness of blended learning model based on inquiry collaborative tutorial toward students’ problem-solving skills in physics. Journal for the Education of Gifted Young Scientists, 8(3), 959–972. https://doi.org/10.17478/JEGYS.675819
Hochberg, K., Becker, S., Louis, M., Klein, P., & Kuhn, J. (2020). Using Smartphones as Experimental Tools—a Follow-up: Cognitive Effects by Video Analysis and Reduction of Cognitive Load by Multiple Representations. Journal of Science Education and Technology, 29(2), 303–317. https://doi.org/10.1007/s10956-020-09816-w.
Hong, J.-C., Chen, M.-Y., Wong, A., Hsu, T.-F., & Peng, C.-C. (2012). Developing Physics Concepts Through Hands-On Problem Solving: A Perspective On A Technological Project Design. International Journal of Technology and Design Education, 22(4), 473–487. https://doi.org/10.1007/s10798-011-9163-7.
Ince, E. (2018). An Overview of Problem Solving Studies in Physics Education. Journal of Education and Learning, 7(4), 191. https://doi.org/10.5539/jel.v7n4p191.
Kohl, P. B., & Finkelstein, N. D. (2007). Expert and novice use of multiple representations during physics problem solving. AIP Conference Proceedings, 951, 132–135. https://doi.org/10.1063/1.2820914.
Kortemeyer, G. (2016). The Losing Battle Against Plug-and-Chug. The Physics Teacher, 54(14). https://doi.org/10.1119/1.4937964.
Kusumawati, I., Sumarli, S., Sutopo, S., & Kusairi, S. (2020). Effectiveness of HOTS-Based Multiple Representation Learning Model in Circular Motion Material. JIPF (Jurnal Ilmu Pendidikan Fisika), 5(1), 23. https://doi.org/10.26737/jipf.v5i1.1112.
Liaw, H., Yu, Y.-R., Chou, C.-C., & Chiu, M.-H. (2022). Relationships between Facial Expressions, Prior Knowledge, and Multiple Representations: a Case of Conceptual Change for Kinematics Instruction. https://doi.org/10.1007/s10956-020-09863-3/Published.
Lucas, L. L., & Lewis, E. B. (2019). High school students’ use of representations in physics problem solving. School Science and Mathematics, 119(6), 327–339. https://doi.org/10.1111/ssm.12357.
M, A. S., Miriam, S., & Misbah. (2017). Pembelajaran Fisika Berbasis Learning Autonomy Dengan Metode Pemecahan Masalah Pada Topik Gelombang. Jurnal Sains Dan Pendidikan Fisika (JSPF, 13(3), 231–237. https://doi.org/10.35580/jspf.v13i3.6192.
Munfaridah, N., Avraamidou, L., & Goedhart, M. (2022). Preservice Physics Teachers’ Development of Physics Identities: the Role of Multiple Representations. Research in Science Education, 52(6), 1699–1715. https://doi.org/10.1007/s11165-021-10019-5.
Murshed, M. (2020). Transformation of Multiple Representations in Understanding Real-World Physics Problems. International Journal of Psychosocial Rehabilitation, 24(5), 5413–5425. https://doi.org/10.37200/ijpr/v24i5/pr2020248.
Nielsen, W., Turney, A., Georgiou, H., & Jones, P. (2022). Meaning Making with Multiple Representations: a Case Study of a Preservice Teacher Creating a Digital Explanation. Research in Science Education, 52(3), 871–890. https://doi.org/10.1007/s11165-021-10038-2.
Park, M. (2020). Student’s problem-solving strategies in qualitative physics questions in a simulation-based formative assessment. Disciplinary and Interdisciplinary Science Education Research, 2(1), 1–13. https://doi.org/10.1186/s43031-019-0019-4.
Poluakan, C., & Runtuwene, J. (2018). Students’ difficulties regarding vector representations in free-body system. Journal of Physics: Conference Series, 1120(1). https://doi.org/10.1088/1742-6596/1120/1/012062.
Prain, V., & Waldrip, B. (2006). An exploratory study of teachers’ and students’ use of multi-modal representations of concepts in primary science. International Journal of Science Education, 28(15), 1843–1866. https://doi.org/10.1080/09500690600718294.
Rahmana, L. H. A., Zuhdi, M., & Sutrio, S. (2022). Pengaruh Pembelajaran STEM Berbasis Masalah Terhadap Penguasaan Konsep Fisika Peserta Didik. Jurnal Pendidikan Fisika Dan Teknologi, 8(Special Edition), 38–42. https://doi.org/10.29303/jpft.v8ispecialissue.3520
Rohmah, L., P, S. H., & Yushardi. (2018). Analisis Kesalahan Siswa dalam Memecahkan Masalah FIsika Berdasarkan Polya Pada Pokok Bahasan Fluida Statis di SMAN Jember. Jurnal Pembelajaran Fisika, 7(4), 328–333. https://doi.org/10.19184/jpf.v7i4.9653.
Rokhmat, J., Marzuki, W., & Putrie, S. D. (2019). A strategy of scaffolding development to increase students’ problem-solving abilities: The case of physics learning with causalitic-thinking approach. Journal of Turkish Science Education, 16(4), 569–579. https://doi.org/10.36681/tused.2020.8.
Sartika, D., Mutmainna, A. A., Abdullah, H., & Tawil, M. (2019). Preliminary Research on Prospective Teacher’s Ability in Understanding the Physics Problems by Sketching. AIP Conference Proceedings, 2169, 1–5. https://doi.org/10.1063/1.5132639.
Suyatna, A., Anggraini, D., Agustina, D., & Widyastuti, D. (2017). The role of visual representation in physics learning: Dynamic versus static visualization. Journal of Physics: Conference Series, 909(1). https://doi.org/10.1088/1742-6596/909/1/012048.
Syahri, W., Yusnaidar, Y., Epinur, E., Muhaimin, M., & Habibi, A. (2021). Effectiveness of multimedia based on multiple representation of Hess’ law: Concept and skills of pre-service science teachers. International Journal of Instruction, 14(3), 451–462. https://doi.org/10.29333/iji.2021.14326a.
Toding, Y., Poluakan, C., & Mandolang, A. (2019). The Application Of Multiple Representations In Vector Addition. International Journal of Advanced Educational Research, 4(6), 15–17. http://localhost:8080/xmlui/handle/123456789/387.
Trianggono, M. M. (2017). Analisis Kausalitas Pemahaman Konsep Dengan Kemampuan Berpikir Kreatif Siswa Pada Pemecahan Masalah Fisika. Jurnal Pendidikan Fisika Dan Keilmuan (JPFK, 3(1), 1–12. https://doi.org/10.25273/jpfk.v3i1.874.
Umrotul, J., L., A. A., Kusairi, S., & Pramono, N. A. (2022). The ability to solve physics problems in symbolic and numeric representations. Revista Mexicana de Fisica E, 19(1). https://doi.org/10.31349/RevMexFisE.19.010209.
Utomo, K. D., Soegeng, A. Y., Purnamasari, I., & Amaruddin, H. (2021). Pemecahan Masalah Kesulitan Belajar Siswa pada Masa Pandemi Covid-19. Mimbar PGSD Undiksha, 9(1), 1–9. https://doi.org/10.23887/jjpgsd.v9i1.29923.
Vegisari, W., I., & Hardiyanti, S. (2020). Interactive conceptual instruction model assisted by PhET simulations on the improvement of physics multiple representations. Journal of Physics: Conference Series, 1440(1). https://doi.org/10.1088/1742-6596/1440/1/012030.
Veronica, T., Swistoro, E., & Hamdany, D. (2018). Pengaruh Pembelajaran dengan Model Problem Solving Fisika terhadap Hasil Belajar dan Kemampuan Pemecahan Masalah Fisika Siswa Kelas XI IPA SMAN 1 Lebong. Jurnal Kumparan Fisika, 1(2), 31–39. https://doi.org/10.33369/jkf.1.2.31-39.
Wang, R., Nellippallil, A. B., Wang, G., Yan, Y., Allen, J. K., & Mistree, F. (2021). A process knowledge representation approach for decision support in design of complex engineered systems. Advanced Engineering Informatics, 48. https://doi.org/10.1016/j.aei.2021.101257.
Wicaksono, D., Arifuddin, M., & Misbah. (2017). Meningkatkan Keterampilan Prosedural Siswa Kelas VIII E SMP Negeri 31 Banjarmasin Melalui Model Pengajaran Langsung Pada Pembelajaran IPA Fisika. Jurnal Ilmiah Pendidikan Fisika, 1(2), 64–74. https://doi.org/10.20527/jipf.v1i2.1967.
Yuberti, L., S., A., A., S., A., M., & Jermsittiparsert, K. (2019). Approaching problem-solving skills of momentum and impulse phenomena using context and problem-based learning. European Journal of Educational Research, 8(4), 1217–1227. https://doi.org/10.12973/eu-jer.8.4.1217.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Napis Napis, Yufiarti, R.A. Murti Kusuma Wirasti
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Journal of Education Technology agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)