Increasing the Effectiveness of Higher Education Academic Services Through the Implementation of the Chatbot Platform Using the SVM Machine Learning Algorithm
DOI:
https://doi.org/10.23887/jp2.v6i2.62611Keywords:
Chatbot, Academic Services, SVMAbstract
The education sector has adopted technology and digitization. To create appropriate technology that can increase the effectiveness and efficiency of existing processes in education, especially higher education, innovations are needed that can provide value to tertiary institutions. The right support is needed to achieve value in academic services as the heart of higher education. However, many universities still have not been able to provide maximum service. This research aims to create a chatbot model to support effective academic services for tertiary institutions. This research belongs to the type of research design science research (DSR). The research procedures were carried out by collecting data, categorizing data, creating chatbot models, model evaluation, and model implementation. Data was collected by inviting resource persons through focus group discussions (FGD), with the criteria being prospective students, university students, and the public interested in academic services in tertiary institutions. The resource persons were asked questions about the academic services needed. Based on the data obtained, there were 257 questions related to academic services. Service categorization is the process of classifying questions based on the functions of divisions or departments in tertiary institutions. Based on the data collection and service categorization results, a chatbot model is created, followed by model evaluation and implementation. The research analysis results show that the academic management chatbot model that uses the SVM algorithm can classify questions asked through chatbots with an accuracy of 57%, performing to support higher education academic services.
References
Adamopoulou, E., & Moussiades, L. (2020). An Overview of Chatbot Technology. IFIP Advances in Information and Communication Technology, 1(1), 373–383. https://doi.org/10.1007/978-3-030-49186-4_31. DOI: https://doi.org/10.1007/978-3-030-49186-4_31
Akhyar, L., & Sumartono, I. (2023). Implementasi Layanan Akademik Berbasis Chatbot untuk Meningkatkan Interaksi Mahasiswa. Resolusi : Rekayasa Teknik Informatika Dan Informasi, 3(5). https://doi.org/10.30865/resolusi.v3i5.767.
Alfarizi, M. I., Syafaah, L., & Lestandy, M. (2022). Emotional Text Classification Using TF-IDF (Term Frequency-Inverse Document Frequency) And LSTM (Long Short-Term Memory). Juita : Jurnal Informatika, 10(2), 225. https://doi.org/10.30595/juita.v10i2.13262. DOI: https://doi.org/10.30595/juita.v10i2.13262
Almustaqim, A., & Toscany, A. N. (2022). Perancangan Sistem Chatbot Sebagai Virtual Assistant Pada Pt. Everbright Jambi. Skanika, 5(2), 228–239. https://doi.org/10.36080/skanika.v5i2.2953. DOI: https://doi.org/10.36080/skanika.v5i2.2953
Amrullah, A. Z., Anas, A. S., & Primajati, G. (2022). Implementasi Chatbot sebagai Virtual Assistant Penerimaan Mahasiswa Baru pada Universitas Bumigora. Jurnal Bumigora Information Technology (BITe), 4(1), 17–26. https://doi.org/10.30812/bite.v4i1.1664. DOI: https://doi.org/10.30812/bite.v4i1.1664
Ardiansyah, R., Marya, D., & Novianti, A. (2023). Penggunaan metode string matching pada sistem informasi mahasiswa Polinema dengan chatbot. Jurnal Eltek, 21(1), 28–35. https://doi.org/10.33795/eltek.v21i1.381. DOI: https://doi.org/10.33795/eltek.v21i1.381
Azkiyah, Z., Kartiko, A., & Mitra Zuana, M. M. (2020). Pengaruh Kualitas Pelayanan Akademik Dan Promosi Terhadap Minat Siswa Baru Di Madrasah. Nidhomul Haq : Jurnal Manajemen Pendidikan Islam, 5(2), 290–303. https://doi.org/10.31538/ndh.v5i2.538. DOI: https://doi.org/10.31538/ndh.v5i2.538
Cannavaro, N. (2023). Aplikasi Chatbot untuk Layanan Akademik Menggunakan Platform RASA Open Source dengan Fitur Two Stage Fallback. Jurnal Ilmu Komputer Dan Informatika, 3(1), 53–64. https://doi.org/10.54082/jiki.73. DOI: https://doi.org/10.54082/jiki.73
Eren, B. A. (2021). Determinants of customer satisfaction in chatbot use: evidence from a banking application in Turkey. International Journal of Bank Marketing, 39(2), 294–311. https://doi.org/10.1108/IJBM-02-2020-0056. DOI: https://doi.org/10.1108/IJBM-02-2020-0056
Guntoro, G., Loneli, C., & Lisnawita, L. (2020). Aplikasi Chatbot untuk Layanan Informasi dan Akademik Kampus Berbasis Artificial Intelligence Markup Language (AIML). Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 11(2), 291–300. https://doi.org/10.31849/digitalzone.v11i2.5049. DOI: https://doi.org/10.31849/digitalzone.v11i2.5049
Herfian, M. R., & Adriansyah, A. R. (2021). Analisis dan Perancangan Aplikasi Chatbot dalam Pelayanan Penerimaan Mahasiswa Baru pada Perguruan Tinggi. Jurnal Informatika Terpadu, 7(2), 87–93. https://doi.org/10.54914/jit.v7i2.370. DOI: https://doi.org/10.54914/jit.v7i2.370
Hidayat, W. (2021). Pengaruh Algoritma ADASYN dan SMOTE terhadap Performa Support Vector Machine pada Ketidakseimbangan Dataset Airbnb. Edumatic: Jurnal Pendidikan Informatika, 5(1), 11–20. https://doi.org/10.29408/edumatic.v5i1.3125. DOI: https://doi.org/10.29408/edumatic.v5i1.3125
Hikmah, N., Ariyanti, D., & Pratama, F. A. (2022). Implementasi Chatbot Sebagai Virtual Assistant di Universitas Panca Marga Probolinggo menggunakan Metode TF-IDF. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 4(2), 133–148. https://doi.org/10.35746/jtim.v4i2.225. DOI: https://doi.org/10.35746/jtim.v4i2.225
Junaedy, F. Z., Insani, R. H., & Santoso, I. (2022). Komparasi Algoritma Support Vector Machine Dan Naïve Bayes Pada Analisis Sentimen Formula-E Jakarta Tahun 2022. Jurnal Ikraith Informatika, 7(2), 157–164. https://journals.upi-yai.ac.id/index.php/ikraith-informatika/article/view/2825.
Kanetaki, Z., Stergiou, C., Bekas, G., Troussas, C., & Sgouropoulou, C. (2022). A Hybrid Machine Learning Model for Grade Prediction in Online Engineering Education. International Journal of Engineering Pedagogy, 12(3), 4–23. https://doi.org/10.3991/IJEP.V12I3.23873. DOI: https://doi.org/10.3991/ijep.v12i3.23873
Kolachalama, V. B. (2022). Machine learning and pre-medical education. Artificial Intelligence in Medicine, 129(4), 102313. https://doi.org/10.1016/j.artmed.2022.102313. DOI: https://doi.org/10.1016/j.artmed.2022.102313
Lezhnina, O., & Kismihók, G. (2022). Combining statistical and machine learning methods to explore German students’ attitudes towards ICT in PISA. International Journal of Research and Method in Education, 45(2), 180–199. https://doi.org/10.1080/1743727X.2021.1963226. DOI: https://doi.org/10.1080/1743727X.2021.1963226
Marlius, D., & Ananda, F. (2020). Pengaruh Kualitas Pelayanan Website Akademik Terhadap Minat Kuliah Di AKBP Padang. Jurnal Pundi, 3(3), 191. https://doi.org/10.31575/jp.v3i3.190. DOI: https://doi.org/10.31575/jp.v3i3.190
Mildawati, T. (2021). Efektifitas Pelayanan Akademik Daring Terhadap Kualias Penyelesaian Studi Akhir Mahasiswa Di Masa Pandemi Covid-19. Jurnal Teknologi Pendidikan Madrasah, 4(1), 52–79. https://doi.org/10.5281/zenodo.5579960.
Munir, H., Vogel, B., & Jacobsson, A. (2022). Artificial Intelligence and Machine Learning Approaches in Digital Education: A Systematic Revision. Information, 13(4), 203. https://doi.org/10.3390/info13040203. DOI: https://doi.org/10.3390/info13040203
Nugraha, K. A., & Sebastian, D. (2021). Chatbot Layanan Akademik Menggunakan K-Nearest Neighbor. Jurnal Sains Dan Informatika, 7(1), 11–19. https://doi.org/10.34128/jsi.v7i1.285. DOI: https://doi.org/10.34128/jsi.v7i1.285
Okoye, K., Arrona-Palacios, A., Camacho-Zuñiga, C., Achem, J. A. G., Escamilla, J., & Hosseini, S. (2022). Towards teaching analytics: a contextual model for analysis of students’ evaluation of teaching through text mining and machine learning classification. Education and Information Technologies, 27(3), 3891–3933. https://doi.org/10.1007/s10639-021-10751-5. DOI: https://doi.org/10.1007/s10639-021-10751-5
Pallathadka, H., Wenda, A., Ramirez-Asís, E., Asís-López, M., Flores-Albornoz, J., & Phasinam, K. (2023). Classification and prediction of student performance data using various machine learning algorithms. Materials Today: Proceedings, 80(7), 3782–3785. https://doi.org/10.1016/j.matpr.2021.07.382. DOI: https://doi.org/10.1016/j.matpr.2021.07.382
Prahesti, R. T., Ruliana, P., & Subarsa, K. Y. (2021). Kualitas Pelayanan Akademik Terhadap Citra Perguruan Tinggi. Jurnal Ilmu Sosial Dan Humaniora, 4(1), 234–244. https://jayapanguspress.penerbit.org/index.php /ganaya/article/view/1261.
Sarosa, M., Kusumawardani, M., Suyono, A., & Sari, Z. (2020). Implementasi Chatbot Pembelajaran Bahasa Inggris menggunakan Media Sosial. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 6(3), 317. https://doi.org/10.26418/jp.v6i3.43191. DOI: https://doi.org/10.26418/jp.v6i3.43191
Septiani, Y., Aribbe, E., & Diansyah, R. (2020). Analisis Kualitas Layanan Sistem Informasi Akademik Universitas Abdurrab Terhadap Kepuasan Pengguna Menggunakan Metode Sevqual (Studi Kasus : Mahasiswa Universitas Abdurrab Pekanbaru). Jurnal Teknologi Dan Open Source, 3(1), 131–143. https://doi.org/10.36378/jtos.v3i1.560. DOI: https://doi.org/10.36378/jtos.v3i1.560
Sudianto, S., Sripamuji, A. D., Ramadhanti, I., Amalia, R. R., Saputra, J., & Prihatnowo, B. (2022). Penerapan Algoritma Support Vector Machine dan Multi-Layer Perceptron pada Klasisifikasi Topik Berita. Jurnal Nasional Pendidikan Teknik Informatika : Janapati, 11(2), 84–91. https://ejournal.undiksha.ac.id/ index.php/janapati/article/view/44151.
Sugiono, S. (2022). Peran Chatbot Dalam Mendukung Smart Service pada Smart Library. VISI PUSTAKA: Buletin Jaringan Informasi Antar Perpustakaan, 23(3), 207–220. https://doi.org/10.37014/visipustaka.v23i3.1343. DOI: https://doi.org/10.37014/visipustaka.v23i3.1343
Supriyanto, S., & Taufik, Z. A. (2023). Implementasi Chatbot untuk Layanan Frequently Asked Question Akademik dengan Penggunaan Dialogflow. Jurnal Saintekom, 13(1), 1–10. https://doi.org/10.33020/saintekom.v13i1.337. DOI: https://doi.org/10.33020/saintekom.v13i1.337
Susetyo, D. P., Pranajaya, E., Setiawan, T., & Suryana, A. (2022). Kualitas Pelayanan Akademik dan Citra Institusi sebagai Determinan Kepuasan Mahasiswa. Formosa Journal of Applied Sciences, 1(4), 473–492. https://doi.org/10.55927/fjas.v1i4.1250. DOI: https://doi.org/10.55927/fjas.v1i4.1250
Trivedi, S. (2022). Improving students’ retention using machine learning: Impacts and implications. ScienceOpen Preprints, 1(1). https://doi.org/10.14293/S2199-1006.1.SOR-.PPZMB0B.v2. DOI: https://doi.org/10.14293/S2199-1006.1.SOR-.PPZMB0B.v2
Widawati, E., & Siswohadi. (2020). Analisis Tentang Kepuasan Mahasiswa Terhadap Pelayanan Akademik Dan Pelayanan Administrasi. Jurnal Mitra Manajemen, 4(10), 1500–1513. https://doi.org/10.52160/ejmm.v4i10.478. DOI: https://doi.org/10.52160/ejmm.v4i10.478
Widiastuti, T., Karsa, K., & Juliane, C. (2022). Evaluasi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademik Menggunakan Metode Klasifikasi Algoritma C4.5. Technomedia Journal, 7(3), 364–380. https://doi.org/10.33050/tmj.v7i3.1932. DOI: https://doi.org/10.33050/tmj.v7i3.1932
Yağcı, M. (2022). Educational data mining: prediction of students’ academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 11. https://doi.org/10.1186/s40561-022-00192-z. DOI: https://doi.org/10.1186/s40561-022-00192-z
Zulkarnain, M. A., Raharjo, M. F., & Olivya, M. (2020). Perancangan Aplikasi Chatbot Sebagai Media E-Learning Bagi Siswa. Elektron : Jurnal Ilmiah, 12(2), 88–95. https://doi.org/10.30630/eji.12.2.188. DOI: https://doi.org/10.30630/eji.12.2.188
Zulrahman, M. F., Syahputra, H., & Medan, U. N. (2023). Pemanfaatan Artificial Intelligence Markup Language (AIML) Dan Latent Semantic Analysis (LSA) Dalam Pengembangan Chatbot E-Education. Journal of Information Technology and Computer Science (INTECOMS), 6(1). https://doi.org/10.31539/intecoms.v6i1.5459. DOI: https://doi.org/10.31539/intecoms.v6i1.5459
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 lila
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Jurnal Pedagogi dan Pembelajaran agree to the following terms:- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)