Spatial Ability and Digital Literacy Profiles: Preceding Survey on the Need of Augmented Reality Media in Chemistry Instruction

Authors

  • Yuyun Yulianti Universitas Pakuan, Bogor, Indonesia
  • Indarini Dwi Pursitasari Universitas Pakuan, Bogor, Indonesia
  • Irvan Permana Universitas Pakuan, Bogor, Indonesia

DOI:

https://doi.org/10.23887/ijerr.v5i2.49030

Keywords:

Augmented Reality, Spatial Ability, Digital Literacy

Abstract

Students are demanded to be equipped with a sufficient level of multiliteracy to perform 21st Century Skills which include spatial ability and digital literacy. Spatial ability is needed to solve problems in chemistry lessons. In addition to spatial ability, digital literacy is also required to face industry 4.0. This research is aimed to analyze both spatial ability and digital literacy skills along with the media that could help develop the two skills. The research method used is descriptive qualitative method uses a survey to collect the data. This study was carried out on 922 senior high school students from four schools and 35 teachers. Purdue Spatial Visualization Test (PSVT), Likert-scale questionnaire, and closed-ended questionnaire were used as the instruments. The results indicate that 98% of the students are of low category in spatial ability while those showing mid and high category each only consists of 1%. However, in terms of the digital literacy index, the students generally score mediocre. The results from the media need a questionnaire on chemistry instruction to indicate that Augmented Reality-based media is needed both by teachers and students. Therefore, to help improve the students’ spatial ability and digital literacy, a teaching media that visualizes both abstract and concrete objects is needed.

Author Biography

Yuyun Yulianti, Universitas Pakuan, Bogor, Indonesia

Sekolah Pasca Sarjana

Pendidikan IPA

Universitas Pakuan

References

Abdinejad, M., Talaie, B., Qorbani, H. S., & Dalili, S. (2020). Student Perceptions Using Augmented Reality and 3D Visualization Technologies in Chemistry Education. Journal of Science Education and Technology, 30(1), 87–96. https://doi.org/10.1007/s10956-020-09880-2.

Al-nawaiseh, S. J. (2020). The Impact of Using Augmented Reality on the Developing the Tenth Graders Motivation Towards Learning: An Applied Study on the Chemistry Courses. European Journal of Business and Management, 12(15), 118–122. https://doi.org/10.7176/ejbm/12-15-13.

Antonoglou, L. D., Kostelidou, T. N., Charistos, N. D., & Sigalas, M. P. (2014). Investigating Chemistry Students’ Skills to Mentally Manipulate (Rotation & Reflection) 2D Symbolic Molecular Representations. Procedia - Social and Behavioral Sciences, 152, 517–522. https://doi.org/10.1016/j.sbspro.2014.09.208.

Arici, F., Yildirim, P., Caliklar, Ş., & Yilmaz, R. M. (2019). Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. Computers and Education, 142(August), 103647. https://doi.org/10.1016/j.compedu.2019.103647.

Barke, H. D., Hazari, A., & Yitbarek, S. (2008). Misconceptions in chemistry: Addressing perceptions in chemical education. In Misconceptions in Chemistry: Addressing Perceptions in Chemical Education. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-70989-3.

Billinghurst, M., Clark, A., & Lee, G. (2014). A survey of augmented reality. Foundations and Trends in Human-Computer Interaction, 8(2–3), 73–272. https://doi.org/10.1561/1100000049.

Blevins, B. (2018). Teaching Digital Literacy Composing Concepts: Focusing on the Layers of Augmented Reality in an Era of Changing Technology. Computers and Composition, 50, 21–38. https://doi.org/10.1016/j.compcom.2018.07.003.

Bodner, G. M., & Guay, R. B. (1997). The Purdue. The Chemical Educator, 2(4), 1–17. https://doi.org/10.1007/s00897970138a.

Cai, S., Liu, E., Shen, Y., Liu, C., Li, S., & Shen, Y. (2020). Probability learning in mathematics using augmented reality: impact on student’s learning gains and attitudes. Interactive Learning Environments, 28(5), 560–573. https://doi.org/10.1080/10494820.2019.1696839.

Carlisle, D., Tyson, J., & Nieswandt, M. (2015). Fostering spatial skill acquisition by general chemistry students. Chemistry Education Research and Practice, 16(3), 478–517. https://doi.org/10.1039/c4rp00228h.

Celik, C., Guven, G., & Cakir, N. K. (2020). Integration of mobile augmented reality (Mar) applications into biology laboratory: Anatomic structure of the heart. Research in Learning Technology, 28(1063519), 1–11. https://doi.org/10.25304/rlt.v28.2355.

Chandrasekera, T., & Yoon, S.-Y. (2018). The Effect of Augmented and Virtual Reality Interfaces in the Creative Design Process. International Journal of Virtual and Augmented Reality, 2(1), 1–13. https://doi.org/10.4018/ijvar.2018010101.

Chen, S. Y., & Liu, S. Y. (2020). Using augmented reality to experiment with elements in a chemistry course. Computers in Human Behavior, 111(October 2019), 106418. https://doi.org/10.1016/j.chb.2020.106418.

Del Cerro Velázquez, F., & Méndez, G. M. (2021). Application in augmented reality for learning mathematical functions: A study for the development of spatial intelligence in secondary education students. Mathematics, 9(4), 1–19. https://doi.org/10.3390/math9040369.

Dewanti, P., Supuwiningsih, N. N., & Saridewi, D. P. (2021). Utilizing Educational Technologies to Optimize Student and Teacher Learning at Dharma Laksana Mataram Orphanage. Journal of Innovation and Community Engagement, 2(1), 11–20. https://doi.org/10.28932/jice.v2i1.3601.

Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., Jain, V., Karjaluoto, H., Kefi, H., Krishen, A. S., Kumar, V., Rahman, M. M., Raman, R., Rauschnabel, P. A., Rowley, J., Salo, J., Tran, G. A., & Wang, Y. (2021). Setting the future of digital and social media marketing research: Perspectives and research propositions. International Journal of Information Management, 59, 102168. https://doi.org/10.1016/j.ijinfomgt.2020.102168.

Ewais, A., & Troyer, O. De. (2019). A Usability and Acceptance Evaluation of the Use of Augmented Reality for Learning Atoms and Molecules Reaction by Primary School Female Students in Palestine. Journal of Educational Computing Research, 57(7), 1643–1670. https://doi.org/10.1177/0735633119855609.

Flores-Amado, A., Diliegros-Godines, C. J., Trevino, J. P., Sayeg-Sanchez, G., & Gonzalez-Hernandez, H. G. (2020). Augmented reality and matlab® for visuospatial competence development. IEEE Global Engineering Education Conference, EDUCON, 2020-April, 852–858. https://doi.org/10.1109/EDUCON45650.2020.9125205.

Gan, B., Menkhoff, T., & Smith, R. (2015). Enhancing students’ learning process through interactive digital media: New opportunities for collaborative learning. Computers in Human Behaviour, 51, 652–663. https://doi.org/10.1016/j.chb.2014.12.048.

Griffin, P., McGaw, B., & Care, E. (2012). Assessment and teaching of 21st century skills. Assessment and Teaching of 21st Century Skills, 1–345. https://doi.org/10.1007/978-94-007-2324-5.

Guntur, M. I. S., Setyaningrum, W., Retnawati, H., & Marsigit. (2020). Can augmented reality improve problem-solving and spatial skill? Journal of Physics: Conference Series, 1581(1). https://doi.org/10.1088/1742-6596/1581/1/012063.

Habig, S. (2020). Who can benefit from augmented reality in chemistry? Sex differences in solving stereochemistry problems using augmented reality. British Journal of Educational Technology, 51(3), 629–644. https://doi.org/10.1111/bjet.12891.

Harle, M., & Towns, M. (2011). A review of spatial ability literature, its connection to chemistry, and implications for instruction. Journal of Chemical Education, 88(3), 351–360. https://doi.org/10.1021/ed900003n.

Huh, J. R., Park, I. J., Sunwoo, Y., Choi, H. J., & Bhang, K. J. (2020). Augmented reality (Ar)-based intervention to enhance awareness of fine dust in sustainable environments. Sustainability (Switzerland), 12(23), 1–21. https://doi.org/10.3390/su12239874.

Irwansyah, F. S., Asyiah, E. N., & Farida, I. (2019). Augmented reality-based media on molecular hybridization concepts learning. Tadris: Jurnal Keguruan Dan Ilmu Tarbiyah, 4(2), 227–236. https://doi.org/10.24042/tadris.v4i2.5239.

Irwanto, Rohaeti, E., & Prodjosantoso, A. K. (2018). Undergraduate students’ science process skills in terms of some variables: A perspective from Indonesia. Journal of Baltic Science Education, 17(5), 751–764. https://www.ceeol.com/search/article-detail?id=951950.

Keller, S., Rumann, S., & Habig, S. (2021). Cognitive load implications for augmented reality supported chemistry learning. Information (Switzerland), 12(3), 1–20. https://doi.org/10.3390/info12030096.

Kiernan, N. A., Manches, A., & Seery, M. K. (2021). The role of visuospatial thinking in students’ predictions of molecular geometry. Chemistry Education Research and Practice, 2013. https://doi.org/10.1039/d0rp00354a.

Kljun, M., Geroimenko, V., & Čopič Pucihar, K. (2020). Augmented Reality in Education: Current Status and Advancement of the Field. In Springer Series on Cultural Computing. https://doi.org/10.1007/978-3-030-42156-4_1.

Kodiyah, J., Irwansyah, F. S., & ... (2020). Application of augmented reality (AR) media on conformation of alkanes and cycloalkanes concepts to improve student’s spatial ability. Journal of Physics: Conference Series. https://iopscience.iop.org/article/10.1088/1742-6596/1521/4/042093/meta.

Kusdiyanti, H., Zanky, N., & Mokhammad Prasetyo Wati, A. (2020). Blended Learning for Augmented Reality to Increase Student Competitiveness the Filling Subject Toward Making Indonesia 4.0. KnE Social Sciences, 88–100. https://doi.org/10.18502/kss.v4i7.6845.

Lohman, D. F. (1979). Spatial ability: a review and reanalysis of the correlational literature. Aptitudes Research Project, School of Education, Stanford University.

Musfiroh, T. (2014). Pengembangan Kecerdasan Majemuk. Hakikat Kecerdasan Majemuk (Multiple Intelegences).

Perdana, R. (2019). Analysis of Student Critical and Creative Thinking ( CCT ) Skills on Chemistry : A Study of Gender Differences. 43–52. https://doi.org/10.2478/jesr-2019-0053.

Peterson, C. N., Tavana, S. Z., Akinleye, O. P., Johnson, W. H., & Berkmen, M. B. (2020a). An idea to explore: Use of augmented reality for teaching three-dimensional biomolecular structures. Biochemistry and Molecular Biology Education, 48(3), 276–282. https://doi.org/10.1002/bmb.21341.

Peterson, C. N., Tavana, S. Z., Akinleye, O. P., Johnson, W. H., & Berkmen, M. B. (2020b). An idea to explore: Use of augmented reality for teaching three‐dimensional biomolecular structures. Biochemistry and Molecular Biology Education, 48(3), 276–282. https://doi.org/10.1002/bmb.21341.

Rahayu, T., & Mayasari, T. (2018). Profil kemampuan awal literasi digital dalam pembelajaran fisika siswa SMK Kota Madiun. Quantum: Seminar Nasional Fisika, Dan Pendidikan Fisika, 431–437. http://www.seminar.uad.ac.id/index.php/quantum/article/view/294.

Rahmawati, Y., Dianhar, H., & Arifin, F. (2021). Analysing students’ spatial abilities in chemistry learning using 3d virtual representation. Education Sciences, 11(4). https://doi.org/10.3390/educsci11040185.

Ritter, M. E. (2012). Barriers to Teaching Introductory Physical Geography On-line. Review of International Geographical Education Online, 2(1), 61–77. https://dergipark.org.tr/en/download/article-file/115336.

Robandi, B., Kurniati, E., & Puspita Sari, R. (2019). Pedagogy In The Era Of Industrial Revolution 4.0. 239, 38–46. https://doi.org/10.2991/upiupsi-18.2019.7.

Sahin, D., & Yilmaz, R. M. (2020). The effect of Augmented Reality Technology on middle school students’ achievements and attitudes towards science education. Computers and Education, 144, 103710. https://doi.org/10.1016/j.compedu.2019.103710.

Schmid, J. R., Ernst, M. J., & Thiele, G. (2020). Structural Chemistry 2.0: Combining Augmented Reality and 3D Online Models. Journal of Chemical Education, 97(12), 4515–4519. https://doi.org/10.1021/acs.jchemed.0c00823.

Sirakaya, M., & Cakmak, E. K. (2018). The effect of augmented reality use on achievement, misconception and course engagement. Contemporary Educational Technology, 9(3), 297–314. https://doi.org/10.30935/cet.444119.

Sugiyono. (2018). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Alfabeta.

Sung, R. J., Wilson, A. T., Lo, S. M., Crowl, L. M., Nardi, J., St. Clair, K., & Liu, J. M. (2020). BiochemAR: An Augmented Reality Educational Tool for Teaching Macromolecular Structure and Function. Journal of Chemical Education, 97(1), 147–153. https://doi.org/10.1021/acs.jchemed.8b00691.

Suryanti, S., Arifani, Y., & Sutaji, D. (2020). Augmented Reality for Integer Learning: Investigating its potential on students’ critical thinking. Journal of Physics: Conference Series, 1613(1). https://doi.org/10.1088/1742-6596/1613/1/012041.

Suwartono, T., & Aniuranti, A. (2019). Digital Teaching Tools in 21st Century EFL Classroom: Are Our Teachers Ready? ELLITE: Journal of English Language, Literature, and Teaching, 3(2), 57. https://doi.org/10.32528/ellite.v3i2.1916.

Tamami, A. A., & Dwiningsih, K. (2020). The Effectivity of 3D Interactive Multimedia to Increase the Students’ Visuospatial Abilities in Molecular. Jurnal Pendidikan Dan Pengajaran, 53(3), 307. https://doi.org/10.23887/jpp.v53i3.25883.

Vagg, T., Balta, J. Y., Bolger, A., & Lone, M. (2020). Multimedia in Education: What do the Students Think? Health Professions Education, 6(3), 325–333. https://doi.org/doi.org/10.1016/j.hpe.2020.04.011.

Weng, C., Otanga, S., Christianto, S. M., & Chu, R. J. C. (2020). Enhancing Students’ Biology Learning by Using Augmented Reality as a Learning Supplement. Journal of Educational Computing Research, 58(4), 747–770. https://doi.org/10.1177/0735633119884213.

Wu, H. K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465–492. https://doi.org/10.1002/sce.10126.

Downloads

Published

2022-07-20

How to Cite

Yulianti, Y., Indarini Dwi Pursitasari, & Irvan Permana. (2022). Spatial Ability and Digital Literacy Profiles: Preceding Survey on the Need of Augmented Reality Media in Chemistry Instruction. Indonesian Journal of Educational Research and Review, 5(2), 284–294. https://doi.org/10.23887/ijerr.v5i2.49030

Issue

Section

Articles